Cargando…

Group colorings and Bernoulli subflows /

In this paper the authors study the dynamics of Bernoulli flows and their subflows over general countable groups. One of the main themes of this paper is to establish the correspondence between the topological and the symbolic perspectives. From the topological perspective, the authors are particula...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gao, Su, 1968- (Autor), Jackson, Steve, 1957- (Autor), Seward, Brandon, 1987- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1141.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn938478481
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 160120t20162015riua ob 001 0 eng d
040 |a COO  |b eng  |e rda  |e pn  |c COO  |d OCLCO  |d OCLCQ  |d GZM  |d OCLCF  |d UIU  |d OCLCA  |d YDX  |d EBLCP  |d LEAUB  |d OCLCQ  |d UKAHL  |d VT2  |d K6U  |d S9M  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1262677184 
020 |a 9781470428754  |q (online) 
020 |a 147042875X  |q (online) 
020 |z 9781470418472  |q (alk. paper) 
020 |z 1470418479  |q (alk. paper) 
029 1 |a AU@  |b 000065550797 
035 |a (OCoLC)938478481  |z (OCoLC)1262677184 
050 4 |a QA901  |b .G37 2016 
082 0 4 |a 512.7  |2 23 
049 |a UAMI 
100 1 |a Gao, Su,  |d 1968-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjHjQyC8qJ7MjMmhKQGj4q 
245 1 0 |a Group colorings and Bernoulli subflows /  |c Su Gao, Steve Jackson, Brandon Seward. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2015 
300 |a 1 online resource (vi, 241 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 241, number 1141 
588 0 |a Online resource; title from PDF title page (viewed March 24, 2016). 
500 |a "Volume 241, number 1141 (second of 4 numbers), May 2016." 
504 |a Includes bibliographical references (pages 237-238) and index. 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. Bernoulli flows and subflows; 1.2. Basic notions; 1.3. Existence of free subflows; 1.4. Hyper aperiodic points and -colorings; 1.5. Complexity of sets and equivalence relations; 1.6. Tilings of groups; 1.7. The almost equality relation; 1.8. The fundamental method; 1.9. Brief outline; Chapter 2. Preliminaries; 2.1. Bernoulli flows; 2.2. 2-colorings; 2.3. Orthogonality; 2.4. Minimality; 2.5. Strengthening and weakening of 2-colorings; 2.6. Other variations of 2-colorings; 2.7. Subflows of (2 N) G 
505 8 |a Chapter 3. Basic Constructions of 2-Colorings 3.1. 2-Colorings on supergroups of finite index; 3.2. 2-Colorings on group extensions; 3.3. 2-Colorings on Z; 3.4. 2-Colorings on nonabelian free groups; 3.5. 2-Colorings on solvable groups; 3.6. 2-Colorings on residually finite groups; Chapter 4. Marker Structures and Tilings; 4.1. Marker structures on groups; 4.2. 2-Colorings on abelian and FC groups by markers; 4.3. Some properties of \ccc groups; 4.4. Abelian, nilpotent, and polycyclic groups are \ccc; 4.5. Residually finite and locally finite groups and free products are ccc 
505 8 |a Chapter 5. Blueprints and Fundamental Functions5.1. Blueprints; 5.2. Fundamental functions; 5.3. Existence of blueprints; 5.4. Growth of blueprints; Chapter 6. Basic Applications of the Fundamental Method; 6.1. The uniform 2-coloring property; 6.2. Density of 2-colorings; 6.3. Characterization of the ACP; Chapter 7. Further Study of Fundamental Functions; 7.1. Subflows generated by fundamental functions; 7.2. Pre-minimality; 7.3. [Delta]-minimality; 7.4. Minimality constructions; 7.5. Rigidity constructions for topological conjugacy 
505 8 |a Chapter 8. The Descriptive Complexity of Sets of 2-Colorings 8.1. Smallness in measure and category 8.2. [Sigma] 0 2 -hardness and [Pi] 0 2 -completeness 8.3. Flecc groups; 8.4. Nonflecc groups; Chapter 9. The Complexity of the Topological Conjugacy Relation; 9.1. Introduction to countable Borel equivalence relations; 9.2. Basic properties of topological conjugacy; 9.3. Topological conjugacy of minimal free subflows; 9.4. Topological conjugacy of free subflows 
505 8 |a Chapter 10. Extending Partial Functions to 2-Colorings; 10.1. A sufficient condition for extendability; 10.2. A characterization for extendability; 10.3. Almost equality and cofinite domains 10.4. Automatic extendability Chapter 11. Further Questions; 11.1. Group structures; 11.2. 2-colorings; 11.3. Generalizations; 11.4. Descriptive complexity; Bibliography; Index; Back Cover 
520 |a In this paper the authors study the dynamics of Bernoulli flows and their subflows over general countable groups. One of the main themes of this paper is to establish the correspondence between the topological and the symbolic perspectives. From the topological perspective, the authors are particularly interested in free subflows (subflows in which every point has trivial stabilizer), minimal subflows, disjointness of subflows, and the problem of classifying subflows up to topological conjugacy. Their main tool to study free subflows will be the notion of hyper aperiodic points; a point is hyp. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Fluid mechanics. 
650 0 |a Bernoulli numbers. 
650 6 |a Mécanique des fluides. 
650 6 |a Nombres de Bernoulli. 
650 7 |a Bernoulli numbers  |2 fast 
650 7 |a Fluid mechanics  |2 fast 
700 1 |a Jackson, Steve,  |d 1957-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjxjdFVRjr4YXXRvCpb6Dm 
700 1 |a Seward, Brandon,  |d 1987-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjH49pQVK9HxRb7D67bgYX 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Group colorings and Bernoulli subflows (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGtkrdHT8QqhjTJVcgGfv3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Gao, Su, 1968-  |t Group colorings and Bernoulli subflows.  |d Providence, Rhode Island : American Mathematical Society, 2016  |w (DLC) 2015051377 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1141. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901860  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445007 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4901860 
938 |a YBP Library Services  |b YANK  |n 14681443 
994 |a 92  |b IZTAP