Cargando…

Classification of E₀-semigroups by product systems /

In these notes the author presents a complete theory of classification of E_0-semigroups by product systems of correspondences. As an application of his theory, he answers the fundamental question if a Markov semigroup admits a dilation by a cocycle perturbations of noise: It does if and only if it...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Skeide, Michael (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1137.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn938446291
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 151217t20162015riua ob 000 0 eng d
040 |a COO  |b eng  |e rda  |e pn  |c COO  |d UIU  |d GZM  |d OCLCF  |d LLB  |d GZM  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d INT  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d LOA  |d OCLCO  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470428266  |q (online) 
020 |a 1470428261  |q (online) 
020 |z 9781470417383  |q (alk. paper) 
020 |z 1470417383  |q (alk. paper) 
035 |a (OCoLC)938446291 
050 4 |a QA322.4  |b .S567 2016 
082 0 4 |a 512/.25  |2 23 
049 |a UAMI 
100 1 |a Skeide, Michael,  |e author. 
245 1 0 |a Classification of E₀-semigroups by product systems /  |c Michael Skeide. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2015 
300 |a 1 online resource (vi, 126 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 240, number 1137 
588 0 |a Online resource; title from PDF title page (viewed February 16, 2016). 
500 |a "Volume 240, number 1137 (third of 5 numbers), March 2016." 
504 |a Includes bibliographical references (pages 121-126). 
505 0 0 |t Introduction --  |t Morita equivalence and representations --  |t Stable Morita equivalence for Hilbert modules --  |t Ternary isomorphisms --  |t Cocycle conjugacy of E₀-semigroups --  |t E₀-Semigroups, product systems, and unitary cocycles --  |t Conjugate E₀-Semigroups and Morita equivalent product systems --  |t Stable unitary cocycle (inner) conjugacy of E₀-semigroups --  |t About continuity --  |t Hudson-Parthasarathy dilations of spatial Markov semigroups --  |t Von Neumann case: Algebraic classification --  |t Von Neumann case: Topological classification --  |t Von Neumann case: Spatial Markov semigroups --  |g Appendix A:  |t Strong type I product systems --  |g Appendix B:  |t E₀-Semigroups and representations for strongly continuous product systems. 
520 |a In these notes the author presents a complete theory of classification of E_0-semigroups by product systems of correspondences. As an application of his theory, he answers the fundamental question if a Markov semigroup admits a dilation by a cocycle perturbations of noise: It does if and only if it is spatial. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Hilbert space. 
650 0 |a Semigroups of endomorphisms. 
650 0 |a Endomorphisms (Group theory) 
650 6 |a Espace de Hilbert. 
650 6 |a Semi-groupes d'endomorphismes. 
650 6 |a Endomorphismes (Théorie des groupes) 
650 7 |a Endomorphisms (Group theory)  |2 fast 
650 7 |a Hilbert space  |2 fast 
650 7 |a Semigroups of endomorphisms  |2 fast 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Classification of E0-Semigroups by Product Systems (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFVxwJQfwFDJQ6JCTdMfhd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1137. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901856  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444998 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901856 
938 |a YBP Library Services  |b YANK  |n 14681439 
994 |a 92  |b IZTAP