Cargando…

Anisotropic Elasticity : Theory and Applications.

1. Matrix Algebra2. Linear Anisotropic Elastic Materials3. Antiplane Deformations4. The Lekhnitskii Formalism5. The Stroh Formalism6. The Structures and Identities of the Elasticity Matrices7. Transformation of the Elasticity Matrices and Dual Coordinate Systems8. Green's Functions for Infinite...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ting, Thomas C. T.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cary : Oxford University Press, 1996.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. MATRIX ALGEBRA; 1.1 Notations, Definitions, and Identities; 1.2 Eigenvalues and Eigenvectors; 1.3 Diagonalization of Simple and Semisimple Matrices; 1.4 Nonsemisimple Matrices; 1.5 Commutative Matrices; 1.6 Positive Definite Real Matrices; 1.7 Hermitian Matrices; 1.8 Eigenplane; 1.9 Square Roots of a Matrix; 2. LINEAR ANISOTROPIC ELASTIC MATERIALS; 2.1 Elastic Stiffnesses; 2.2 Elastic Compliances; 2.3 Contracted Notations; 2.4 Reduced Elastic Compliances; 2.5 Material Symmetry; 2.6 Matrix C for Materials with Symmetry Planes.
  • 2.7 Matrices s and s' for Materials with Symmetry Planes2.8 Transformation of C and s; 2.9 Restrictions on Elastic Constants; 2.10 Determination of Symmetry Planes; 3. ANTIPLANE DEFORMATIONS; 3.1 Uncoupling of Inplane and Antiplane Displacements; 3.2 Plane Stress Deformations; 3.3 General Solutions for Antiplane Deformations; 3.4 The Complex Functions Inz and √z[sup(2)]
  • a[sup(2)]; 3.5 Green's Functions for Infinite Space and Half-Space; 3.6 Green's Function for Bimaterials; 3.7 Mapping of an Ellipse to a Circle for z=x[sub(1)]+px[sub(2)]