Cargando…

Anisotropic Elasticity : Theory and Applications.

1. Matrix Algebra2. Linear Anisotropic Elastic Materials3. Antiplane Deformations4. The Lekhnitskii Formalism5. The Stroh Formalism6. The Structures and Identities of the Elasticity Matrices7. Transformation of the Elasticity Matrices and Dual Coordinate Systems8. Green's Functions for Infinite...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ting, Thomas C. T.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cary : Oxford University Press, 1996.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn936849115
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 160206s1996 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d ZCU  |d DKC  |d OCLCQ  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 990686121 
020 |a 9780198023845 
020 |a 0198023847 
029 1 |a DEBBG  |b BV044084549 
029 1 |a AU@  |b 000059584988 
035 |a (OCoLC)936849115  |z (OCoLC)990686121 
050 4 |a TA418.9.C6 ǂb T55 1996eb 
082 0 4 |a 620.1/1832 
049 |a UAMI 
100 1 |a Ting, Thomas C. T. 
245 1 0 |a Anisotropic Elasticity :  |b Theory and Applications. 
260 |a Cary :  |b Oxford University Press,  |c 1996. 
300 |a 1 online resource (591 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |6 880-01  |a 1. MATRIX ALGEBRA; 1.1 Notations, Definitions, and Identities; 1.2 Eigenvalues and Eigenvectors; 1.3 Diagonalization of Simple and Semisimple Matrices; 1.4 Nonsemisimple Matrices; 1.5 Commutative Matrices; 1.6 Positive Definite Real Matrices; 1.7 Hermitian Matrices; 1.8 Eigenplane; 1.9 Square Roots of a Matrix; 2. LINEAR ANISOTROPIC ELASTIC MATERIALS; 2.1 Elastic Stiffnesses; 2.2 Elastic Compliances; 2.3 Contracted Notations; 2.4 Reduced Elastic Compliances; 2.5 Material Symmetry; 2.6 Matrix C for Materials with Symmetry Planes. 
505 8 |a 2.7 Matrices s and s' for Materials with Symmetry Planes2.8 Transformation of C and s; 2.9 Restrictions on Elastic Constants; 2.10 Determination of Symmetry Planes; 3. ANTIPLANE DEFORMATIONS; 3.1 Uncoupling of Inplane and Antiplane Displacements; 3.2 Plane Stress Deformations; 3.3 General Solutions for Antiplane Deformations; 3.4 The Complex Functions Inz and √z[sup(2)] -- a[sup(2)]; 3.5 Green's Functions for Infinite Space and Half-Space; 3.6 Green's Function for Bimaterials; 3.7 Mapping of an Ellipse to a Circle for z=x[sub(1)]+px[sub(2)] 
500 |a 7.3 Sextic Formalism in Dual Coordinate Systems. 
520 |a 1. Matrix Algebra2. Linear Anisotropic Elastic Materials3. Antiplane Deformations4. The Lekhnitskii Formalism5. The Stroh Formalism6. The Structures and Identities of the Elasticity Matrices7. Transformation of the Elasticity Matrices and Dual Coordinate Systems8. Green's Functions for Infinite Space, Half-Space, and Composite Space9. Particular Solutions, Stress Singularities, and Stress Decay10. Anisotropic Materials With an Elliptic Boundary11. Anisotropic Media With a Crack or a Rigid Line Inclusion12. Steady State Motion and Surface Waves13. Degenerate and Near Degenerate Materials14. Gen. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Anisotropy. 
650 0 |a Composite materials  |x Mechanical properties. 
650 0 |a Elasticity. 
650 4 |a Anisotropy. 
650 4 |a Composite materials  |x Mechanical properties. 
650 4 |a Elasticity. 
650 6 |a Anisotropie. 
650 6 |a Composites  |x Propriétés mécaniques. 
650 6 |a Élasticité. 
650 7 |a anisotropy.  |2 aat 
650 7 |a Anisotropy  |2 fast 
650 7 |a Composite materials  |x Mechanical properties  |2 fast 
650 7 |a Elasticity  |2 fast 
758 |i has work:  |a Anisotropic elasticity (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYYY8c6q3w3VVqgrrDWH3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ting, Thomas C.T.  |t Anisotropic Elasticity : Theory and Applications.  |d Cary : Oxford University Press, ©1996  |z 9780195074475 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=271000  |z Texto completo 
880 8 |6 505-00/(S  |a 4.7 Dependence of Solutions on Elastic Constants5. THE STROH FORMALISM; 5.1 The Eshelby-Reid-Shockley Formalism; 5.2 Eigenvalues p; 5.3 The Sextic Formalism of Stroh; 5.4 The Stress Function Φ and the Airy Function χ; 5.5 Orthogonality and Closure Relations; 5.6 Positive Definite Hermitian Matrices; 5.7 The Matrix Differential Equation; 5.8 Physical Meanings of p, a, and b; 5.9 Nonsemisimple N; 5.10 Dependence of Solutions on Elastic Constants; 5.11 A.N. Stroh (1926-1962); 6. THE STRUCTURES AND IDENTITIES OF THE ELASTICITY MATRICES; 6.1 The Structure of N[sub(i)]. 
880 8 |6 505-00/(S  |a 3.8 Infinite Space with an Elliptic Hole or an Elliptic Rigid Inclusion3.9 Anisotropic Elliptic Body; 3.10 Green's Functions for an Elliptic Inclusion; 3.11 A Crack in an Infinite Space and Bimaterials; 3.12 Infinite Space with a Hole of Arbitrary Shape; 3.13 Remarks; 3.14 A Theorem; 4. THE LEKHNITSKII FORMALISM; 4.1 The Airy Function χ and the Stress Function Ψ; 4.2 Displacements for Two-Dimensional Stresses; 4.3 Differential Equations for χ and Ψ; 4.4 Eigenvalues p; 4.5 Anisotropic Materials with p[sub(1)]=p[sub(2)]=p[sub(3)]; 4.6 Representation of General Solutions. 
880 8 |6 505-01/(S  |a 6.2 The Structure of N[sub(i)][sup( -1)] [sub(i)]6.3 Explicit Expressions of A and B; 6.4 Explicit Expressions of S, H, and L; 6.5 Identities Relating S, H, and L; 6.6 The Structure of S, H, and L; 6.7 Classification of the Eigenvectors e[sub(i)] and e[sup(i)]; 6.8 Commutative 6×6 Matrices; 6.9 Identities Connecting p, A, and B to Real Matrices; 6.10 Eigenvectors of the Extraordinary Semisimple Matrix Ñ; 7. TRANSFORMATION OF THE ELASTICITY MATRICES AND DUAL COORDINATE SYSTEMS; 7.1 Eigenvalues p(θ); 7.2 Elasticity Matrices in a Rotated Coordinate System. 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL271000 
994 |a 92  |b IZTAP