|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn936848882 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160206s1997 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d MERUC
|d ZCU
|d ICG
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780195357684
|
020 |
|
|
|a 019535768X
|
029 |
1 |
|
|a AU@
|b 000059576539
|
029 |
1 |
|
|a DEBBG
|b BV044084515
|
035 |
|
|
|a (OCoLC)936848882
|
050 |
|
4 |
|a QA402.3 ǂb J66 1997eb
|
082 |
0 |
4 |
|a 629.8/312/015142
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Jonckheere, Edmond A.
|
245 |
1 |
0 |
|a Algebraic and Differential Topology of Robust Stability.
|
260 |
|
|
|a Cary :
|b Oxford University Press,
|c 1997.
|
300 |
|
|
|a 1 online resource (625 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a List of Figures; List of Symbols; 1 Prologue; I: SIMPLICIAL APPROXIMATION AND ALGORITHMS; 2 Robust Multivariable Nyquist Criterion; 2.1 Multivariable Nyquist Criterion; 2.2 Robust Multivariable Nyquist Criterion; 2.3 Uncertainty Space; 2.4 ""Punctured"" Uncertainty Spaces; 2.5 Compactification of Imaginary Axis; 2.6 Horowitz Supertemplate Approach; 2.7 Crossover; 2.8 Mapping into Other Spaces; 3 A Basic Topological Problem; 3.1 The Boundary Problem; 3.2 Topology for Boundary and Continuity; 3.3 Mathematical Formulation of Boundary Problem; 3.4 Example (Continuous Fraction Criterion).
|
505 |
8 |
|
|a 3.5 Example (Kharitonov)3.6 Example (Real Structured Singular Value); 3.7 Example (Brouwer Domain Invariance); 3.8 Example (Covering Map); 3.9 Example (Holomorphic Mapping); 3.10 Example (Proper Mapping); 3.11 Example (Conformal Mapping); 3.12 Examples (Horowitz); 3.13 Example (Functions on Polydisks); 3.14 Several Complex Variables; 3.15 Example (Plurisubharmonic functions); 3.16 Example (Proper Holomorphic and Biholomorphic Maps); 3.17 Example (Whitney's Root System); 4 Simplicial Approximation; 4.1 Simplexes, Complexes, and Polyhedra; 4.2 Abstract Complexes; 4.3 Alexandroff Theorem.
|
505 |
8 |
|
|a 4.4 Simplicial Approximation-Point Set Topology4.5 Simplicial Map-Algebra; 4.6 Computational Issues; 4.7 Relative Simplicial Approximation; 4.8 Cell Complexes and Cellular Maps; 4.9 Historical Notes; 5 Cartesian Product of Many Uncertainties; 5.1 Prismatic Decomposition; 5.2 Boundary of Cartesian Product; 5.3 Simplicial Combinatorics of Cube; 5.4 Q-Triangulation; 5.5 Combinatorial Equivalence; 5.6 Flatness; 6 Computational Geometry; 6.1 Delaunay Triangulation of Template; 6.2 Simplicial Edge Mapping; 6.3 The SimplicialVIEW Software; 6.4 Numerical Stability, Flatness, and Conditioning.
|
505 |
8 |
|
|a 6.5 Making Map (Locally) Simplicial6.6 Procedure; 7 Piecewise-Linear Nyquist Map; 7.1 Piecewise-Linear Nyquist Map; 7.2 From Piecewise-Linear to Simplicial Map; 7.3 Strict Linear Complementarity; 8 Game of the Hex Algorithm; 8.1 2-D Hex Board; 8.2 n-D Hex Board; 8.3 Combinatorial Equivalence; 8.4 Two-Dimensional Hex Game Algorithm; 8.5 Three-Dimensional Hex Game Algorithm; 8.6 Higher-Dimensional Hex Games; 9 Simplicial Algorithms; 9.1 Simplicial Algorithms Over 2-D Uncertainty Space; 9.2 Simplicial Algorithms Over 3-D Uncertainty Space; 9.3 Relative Uncertainty Complex.
|
505 |
8 |
|
|a 9.4 Simplicial Labeling Map9.5 Algorithm-Integer Search; 9.6 Algorithm-Vector Labeling Search; II: HOMOLOGY OF ROBUST STABILITY; 10 Homology of Uncertainty and Other Spaces; 10.1 Simplicial Homology; 10.2 Semisimplicial Homology; 10.3 Homology of a Chain Complex; 10.4 Homotopy Invariance; 10.5 Homology of Product of Uncertainty; 10.6 Uncertainty Manifold-Mayer-Vietoris Sequence; 10.7 Relative Homology Sequence; 10.8 More Sophisticated Homology Computation; 11 Homology of Crossover; 11.1 Combinatorial Homology of Crossover; 11.2 Projecting the Crossover; 12 Cohomology.
|
500 |
|
|
|a 12.1 Simplicial Cohomology.
|
520 |
|
|
|a 1. ProloguePart I: Simplicial approximations of algorithms 2. Robust multivariable Nyquist criterion3. A basic topological problem4. Simplicial approximation5. Cartesian product of many uncertainties6. Computational geometry7. Piece-wise Nyquist map8. Game of Hex algorithm9. Simplicial algorithmsPart II: Homology of robust stability 10. Homology of uncertainty and other spaces11. Homology of crossover12. Cohomology13. Twisted Cartesian product of uncertainty14. Spectral sequence of Nyquist mapPart III: Homotopy of robust stability 15. Homotopy groups and sequences16. Obstruction to extending t.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Control theory.
|
650 |
|
0 |
|a Algebraic topology.
|
650 |
|
0 |
|a Differential topology.
|
650 |
|
6 |
|a Théorie de la commande.
|
650 |
|
6 |
|a Topologie algébrique.
|
650 |
|
6 |
|a Topologie différentielle.
|
650 |
|
7 |
|a Algebraic topology
|2 fast
|
650 |
|
7 |
|a Control theory
|2 fast
|
650 |
|
7 |
|a Differential topology
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Jonckheere, Edmond A.
|t Algebraic and Differential Topology of Robust Stability.
|d Cary : Oxford University Press, ©1997
|z 9780195093018
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=270948
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL270948
|
994 |
|
|
|a 92
|b IZTAP
|