Unimodal and Multimodal Biometric Data Indexing.
This work is on biometric data indexing for large-scale identification systems with a focus on different biometrics data indexing methods. It provides state-of-the-art coverage including different biometric traits, together with the pros and cons for each. Discussion of different multimodal fusion s...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin/Boston :
De Gruyter,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Print_cont_9781614517459; Contents; List of Figures; List of Tables; 1 Fundamentals of Biometric Technology; 1.1 Biometric Authentication Technology; 1.2 Some Major Biometric Applications; 1.3 Operational Process of Biometric Technology; 1.4 Biometric Data Indexing; 1.5 Metrics for Performance Measure; 1.6 Biometric Modalities; 1.6.1 Iris Biometric; 1.6.2 Fingerprint Biometric; 1.6.3 Face Biometric; 1.6.4 Palmprint Biometric; 1.6.5 Hand Geometry Biometric; 1.6.6 Voice Biometric; 1.6.7 Gait Biometric; 1.6.8 Signature Biometric; 1.7 Comparative Study of Different Biometric Modalities.
- 1.7.1 Identification of Parameters1.7.2 Estimation of Values of Parameters; 1.7.3 Estimation of Impact Value; 1.7.4 Quantitative Comparison; 1.8 Summary; 2 Multimodal Biometric and Fusion Technology; 2.1 Multimodal Biometric Authentication Technology; 2.2 Fusion of Multimodalities; 2.3 Fusion Levels; 2.3.1 Sensor Level Fusion; 2.3.2 Feature Level Fusion; 2.3.3 Match-score Level Fusion; 2.3.4 Decision Level Fusion; 2.4 Different Fusion Rules; 2.4.1 Fixed fusion rules; 2.4.2 Trained Fusion Rules; 2.5 Comparative Study of Fusion Rule; 2.6 Summary; 3 Biometric Indexing: State-of-the-Art.
- 3.1 Survey on Iris Biometric Data Indexing3.1.1 Iris Texture-Based Indexing; 3.1.2 Iris Color-Based Indexing; 3.2 Survey on Fingerprint Biometric Data Indexing; 3.2.1 Minutiae-Based Indexing; 3.2.2 Ridge Orientation-Based Indexing; 3.2.3 Other Feature-Based Indexing Techniques; 3.3 Survey on Face Biometric Data Indexing; 3.4 Survey on Multimodal Biometric Data Indexing; 3.5 Summary; 4 Iris Biometric Data Indexing; 4.1 Preliminaries of Gabor Filter; 4.2 Preprocessing; 4.3 Feature Extraction; 4.4 Index Key Generation; 4.5 Storing; 4.5.1 Index Space Creation; 4.5.2 Storing Iris Data.
- 4.6 Retrieving4.7 Performance Evaluation; 4.7.1 Performance Metrics; 4.7.2 Databases; 4.7.3 Evaluation Setup; 4.7.4 Validation of the Parameter Values; 4.7.5 Evaluation; 4.8 Comparison with Existing Work; 4.9 Summary; 5 Fingerprint Biometric Data Indexing; 5.1 Preprocessing; 5.1.1 Normalization; 5.1.2 Segmentation; 5.1.3 Local Orientation Estimation; 5.1.4 Local Frequency Image Representation; 5.1.5 Ridge Filtering; 5.1.6 Binarization and Thinning; 5.1.7 Minutiae Point Extraction; 5.2 Feature Extraction; 5.2.1 Two Closest Points Triangulation; 5.2.2 Triplet Generation.
- 5.3 Index Key Generation5.4 Storing; 5.4.1 Linear Index Space; 5.4.2 Clustered Index Space; 5.4.3 Clustered kd-tree Index Space; 5.5 Retrieving; 5.5.1 Linear Search (LS); 5.5.2 Clustered Search (CS); 5.5.3 Clustered kd-tree Search (CKS); 5.6 Performance Evaluation; 5.6.1 Databases; 5.6.2 Evaluation Setup; 5.6.3 Evaluation; 5.6.4 Searching Time; 5.6.5 Memory Requirements; 5.7 Comparison with Existing Work; 5.8 Summary; 6 Face Biometric Data Indexing; 6.1 Preprocessing; 6.1.1 Geometric Normalization; 6.1.2 Face Masking; 6.1.3 Intensity Enhancement; 6.2 Feature Extraction.