Cargando…

Liquid acquisition devices for advanced in-space cryogenic propulsion systems /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hartwig, Jason William (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn935681724
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 150813s2015 ne o 000 0 eng d
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d EBLCP  |d OCLCF  |d OCLCQ  |d CUY  |d ZCU  |d MERUC  |d ICG  |d DKC  |d OCLCQ  |d UKMGB  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB5C2316  |2 bnb 
016 7 |a 017534519  |2 Uk 
019 |a 935913366 
020 |a 9780128039908  |q (PDF ebook) 
020 |a 0128039906  |q (PDF ebook) 
020 |z 9780128039892  |q (hbk.) 
029 1 |a AU@  |b 000066136150 
029 1 |a UKMGB  |b 017534519 
035 |a (OCoLC)935681724  |z (OCoLC)935913366 
037 |a 9780128039908  |b Ingram Content Group 
050 4 |a TL782  |b .H378 2016 
082 0 4 |a 621.59  |2 23 
049 |a UAMI 
100 1 |a Hartwig, Jason William,  |e author. 
245 1 0 |a Liquid acquisition devices for advanced in-space cryogenic propulsion systems /  |c Jason William Hartwig. 
264 1 |a Amsterdam :  |b Academic Press,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Chapter 1: Introduction Chapter 2: Background and Historical Review Chapter 3: Influential Factors and Physics-Based Modeling of Liquid Acquisition Devices Chapter 4: Room Temperature Liquid Acquisition Device Performance Experiments Chapter 5: Parametric Analysis on the Liquid Hydrogen and Nitrogen Bubble Point Pressure Chapter 6: High Pressure Liquid Oxygen Bubble Point Experiments Chapter 7: High Pressure Liquid Methane Bubble Point Experiments Chapter 8: Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic Liquid Acquisition Devices Chapter 9: Full Scale Liquid Acquisition Device Outflow Tests in Liquid Hydrogen Chapter 10: The Bubble Point Pressure Model for Cryogenic Propellants Chapter 11: The Reseal Pressure Model for Cryogenic Propellants Chapter 12: Analytical Model for Steady Flow through a Porous Liquid Acquisition Device Channel Chapter 13: Optimal Liquid Acquisition Device Screen Weave for a Liquid Hydrogen Fuel Depot Chapter 14: Optimal Propellant Management Device for a Small Scale Liquid Hydrogen Propellant Tank Chapter 15: Conclusions Appendices. 
588 0 |a CIP data; item not viewed. 
505 0 |a Front Cover; Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems; Copyright; Dedication; Contents; Foreword; Preface; Acknowledgments; Chapter 1: Introduction; 1.1. The Flexible Path; 1.2. Fundamental Cryogenic Fluids; 1.3. Motivation for Cryogenic Propulsion Technology Development; 1.4. Existing Challenges with Cryogenic Propellants; 1.5. Cryogenic Fluid Management Subsystems; 1.6. Future Cryogenic Fluid Management Applications; 1.6.1. In-Space Cryogenic Engines; 1.6.2. In-Space Cryogenic Fuel Depots; 1.7. Purpose of Work and Overview by Chapter. 
505 8 |a Chapter 2: Background and Historical Review2.1. Propellant Management Device Purpose; 2.2. Other Types of Propellant Management Devices; 2.3. Vanes; 2.3.1. Design Concept, Basic Flow Physics, and Principle of Operation; 2.3.2. Advantages and Disadvantages; 2.3.3. Storable Propellant Historical Examples; 2.3.3.1. Space Experiments; 2.3.3.2. Vehicles and Missions; 2.4. Sponges; 2.4.1. Design Concept, Basic Flow Physics, and Principle of Operation; 2.4.2. Advantages and Disadvantages; 2.4.3. Storable Propellant Historical Examples; 2.4.3.1. Space Experiments; 2.4.3.2. Vehicles and Missions. 
505 8 |a 2.5. Screen Channel Liquid Acquisition Devices2.5.1. Design Concept, Basic Flow Physics, and Principle of Operation; 2.5.2. Mesh and Metal Type; 2.5.3. Advantages and Disadvantages; 2.5.4. Storable Propellant Historical Examples; 2.5.4.1. Space Experiments; 2.5.4.2. Vehicles and Missions; 2.5.5. Cryogenic Propellant Historical Examples; 2.6. Propellant Management Device Combinations; 2.7. NASA's Current Needs; Chapter 3: Influential Factors and Physics-Based Modeling of Liquid Acquisition Devices; 3.1. 1-g One Dimensional Simplified Pressure Drop Model. 
505 8 |a 3.2. The Room Temperature Bubble Point Pressure3.2.1. Assumptions; 3.2.2. Bubble Point Model Derivation; 3.2.3. Types of Bubble Point Experiments; 3.2.4. Surface Tension Model; 3.2.5. Specifying the Effective Pore Diameter; 3.2.6. Previously Reported Bubble Points; 3.3. Hydrostatic Pressure Drop; 3.4. Flow-Through-Screen Pressure Drop; 3.4.1. Model Derivation; 3.4.2. Model Parameters and Flow-Through-Screen Experiment; 3.4.3. Historical Data and Trends; 3.5. Frictional and Dynamic Pressure Drop; 3.6. Wicking Rate; 3.6.1. Model Derivation; 3.6.2. Wicking Rate Experiment. 
505 8 |a 3.6.3. Historical Data and Trends3.7. Screen Compliance; 3.7.1. Model Derivation and Screen Compliance Experiment; 3.7.2. Historical Data and Trends; 3.8. Material Compatibility; 3.9. The Room Temperature Reseal Pressure Model; 3.9.1. Model Derivation; 3.9.2. Historical Data and Trends; 3.9.3. Specifying the Reseal Diameter; 3.10. Pressurant Gas Type; 3.11. Concluding Remarks and Implications for Cryogenic Propulsion Systems; Chapter 4: Room Temperature Liquid Acquisition Device Performance Experiments; 4.1. Pure Fluid Tests; 4.1.1. Scanning Electron Microscopy Analysis. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Low temperature engineering. 
650 6 |a Cryotechnique. 
650 7 |a Low temperature engineering  |2 fast 
776 0 8 |i Print version :  |z 9780128039892 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4202828  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4202828 
994 |a 92  |b IZTAP