Cargando…

Global Carleman estimates for degenerate parabolic operators with applications /

Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics. This manuscript has been conce...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cannarsa, Piermarco, 1957-
Otros Autores: Martinez, P. (Patrick), 1970-, Vancostenoble, J. (Judith), 1972-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society, no. 1133
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn934424781
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 151113s2016 riu ob 001 0 eng d
040 |a LLB  |b eng  |e rda  |e pn  |c LLB  |d OCLCO  |d COO  |d OCLCF  |d YDX  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d LOA  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781470427498  |q (online) 
020 |a 1470427494  |q (online) 
020 |a 9781470414962  |q (alk. paper) 
020 |a 1470414961  |q (alk. paper) 
035 |a (OCoLC)934424781 
050 4 |a QA329.4  |b .C36 2016 
082 0 4 |a 515/.3534  |2 23 
049 |a UAMI 
100 1 |a Cannarsa, Piermarco,  |d 1957- 
245 1 0 |a Global Carleman estimates for degenerate parabolic operators with applications /  |c P. Cannarsa, P. Martinez, J. Vancostenoble. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v no. 1133 
504 |a Includes bibliographical references and index. 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Controllability and inverse source problems: Notation and main results  |t Chapter 3. Global Carleman estimates for weakly degenerate operators  |t Chapter 4. Some Hardy-type inequalities (proof of Lemma 3.18)  |t Chapter 5. Asymptotic properties of elements of $H^2 (\Omega) \cap H^1 _{A,0}(\Omega)$  |t Chapter 6. Proof of the topological lemma 3.21  |t Chapter 7. Outlines of the proof of Theorems 3.23 and 3.26  |t Chapter 8. Step 1: computation of the scalar product on subdomains (proof of Lemmas 7.1 and 7.16)  |t Chapter 9. Step 2: a first estimate of the scalar product: proof of Lemmas 7.2, 7.4, 7.18 and 7.19  |t Chapter 10. Step 3: the limits as $\Omega ^\delta \to \Omega $ (proof of Lemmas 7.5 and 7.20)  |t Chapter 11. Step 4: partial Carleman estimate (proof of Lemmas 7.6 and 7.21)  |t Chapter 12. Step 5: from the partial to the global Carleman estimate (proof of Lemmas 7.9-7.11)  |t Chapter 13. Step 6: global Carleman estimate (proof of Lemmas 7.12, 7.14 and 7.15)  |t Chapter 14. Proof of observability and controllability results  |t Chapter 15. Application to some inverse source problems: proof of Theorems 2.9 and 2.11  |t Chapter 16. Controllability and inverse source problems: notation and main results  |t Chapter 17. Global Carleman estimates for strongly degenerate operators  |t Chapter 18. Hardy-type inequalities: proof of Lemma 17.10 and applications  |t Chapter 19. Global Carleman estimates in the strongly degenerate case: proof of Theorem 17.7  |t Chapter 20. Proof of Theorem 17.6 (observability inequality)  |t Chapter 21. Lack of null controllability when $\alpha \geq 2$: proof of Proposition 16.5  |t Chapter 22. Explosion of the controllability cost as $\alpha \to 2^-$ in space dimension $1$: proof of Proposition 16.7  |t Chapter 23. Some open problems. 
588 0 |a Print version record. 
520 |a Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics. This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Elliptic operators. 
650 0 |a Parabolic operators. 
650 0 |a Carleman theorem. 
650 6 |a Opérateurs elliptiques. 
650 6 |a Opérateurs paraboliques. 
650 6 |a Méthode de Carleman. 
650 7 |a Carleman theorem  |2 fast 
650 7 |a Elliptic operators  |2 fast 
650 7 |a Parabolic operators  |2 fast 
700 1 |a Martinez, P.  |q (Patrick),  |d 1970- 
700 1 |a Vancostenoble, J.  |q (Judith),  |d 1972- 
776 0 8 |i Print version:  |a Cannarsa, Piermarco, 1957-  |t Global Carleman estimates for degenerate parabolic operators with applications /  |x 0065-9266  |z 9781470414962  |w (DLC) 2015033103 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901852  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444985 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901852 
938 |a YBP Library Services  |b YANK  |n 14681435 
994 |a 92  |b IZTAP