Cargando…

Irreducible geometric subgroups of classical algebraic groups /

Let G be a simple classical algebraic group over an algebraically closed field K of characteristic p \ge 0 with natural module W. Let H be a closed subgroup of G and let V be a non-trivial irreducible tensor-indecomposable p-restricted rational KG-module such that the restriction of V to H is irredu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Burness, Timothy C., 1979-
Otros Autores: Ghandour, Soumaia, 1980-, Testerman, Donna M., 1960-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society, no. 1130
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn934424689
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 151113s2016 riu ob 000 0 eng d
040 |a LLB  |b eng  |e rda  |e pn  |c LLB  |d OCLCO  |d COO  |d OCLCF  |d YDX  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d OCLCQ  |d LOA  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470427436  |q (online) 
020 |a 1470427435  |q (online) 
020 |a 9781470414948  |q (alk. paper) 
020 |a 1470414945  |q (alk. paper) 
029 1 |a AU@  |b 000065640745 
035 |a (OCoLC)934424689 
050 4 |a QA183  |b .B87 2016 
082 0 4 |a 512/.5  |2 23 
049 |a UAMI 
100 1 |a Burness, Timothy C.,  |d 1979-  |1 https://id.oclc.org/worldcat/entity/E39PCjqFhPq3GwjKCtg8gcwxj3 
245 1 0 |a Irreducible geometric subgroups of classical algebraic groups /  |c Timothy C. Burness, Soumaia Ghandour, Donna M. Testerman. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v no. 1130 
504 |a Includes bibliographical references. 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Preliminaries  |t Chapter 3. The $\C _1, \C _3$ and $\C _6$ collections  |t Chapter 4. Imprimitive subgroups  |t Chapter 5. Tensor product subgroups, I  |t Chapter 6. Tensor product subgroups, II. 
588 0 |a Print version record. 
520 |a Let G be a simple classical algebraic group over an algebraically closed field K of characteristic p \ge 0 with natural module W. Let H be a closed subgroup of G and let V be a non-trivial irreducible tensor-indecomposable p-restricted rational KG-module such that the restriction of V to H is irreducible. In this paper the authors classify the triples (G, H, V) of this form, where H is a disconnected maximal positive-dimensional closed subgroup of G preserving a natural geometric structure on W. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometric group theory. 
650 0 |a Linear algebraic groups. 
650 6 |a Théorie géométrique des groupes. 
650 6 |a Groupes linéaires algébriques. 
650 7 |a Geometric group theory  |2 fast 
650 7 |a Linear algebraic groups  |2 fast 
700 1 |a Ghandour, Soumaia,  |d 1980-  |1 https://id.oclc.org/worldcat/entity/E39PCjHbVT64Q76b9J3mtPWMj3 
700 1 |a Testerman, Donna M.,  |d 1960-  |1 https://id.oclc.org/worldcat/entity/E39PBJwtgMfhdBj8TcJTWrtBT3 
758 |i has work:  |a Irreducible geometric subgroups of classical algebraic groups (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGKjjFdWgcCChQC7vfDrdP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Burness, Timothy C., 1979-  |t Irreducible geometric subgroups of classical algebraic groups /  |x 0065-9266  |z 9781470414948  |w (DLC) 2015033097 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901849  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901849 
938 |a YBP Library Services  |b YANK  |n 14681432 
994 |a 92  |b IZTAP