|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn934424689 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
151113s2016 riu ob 000 0 eng d |
040 |
|
|
|a LLB
|b eng
|e rda
|e pn
|c LLB
|d OCLCO
|d COO
|d OCLCF
|d YDX
|d EBLCP
|d IDB
|d OCLCQ
|d LEAUB
|d OCLCQ
|d LOA
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781470427436
|q (online)
|
020 |
|
|
|a 1470427435
|q (online)
|
020 |
|
|
|a 9781470414948
|q (alk. paper)
|
020 |
|
|
|a 1470414945
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000065640745
|
035 |
|
|
|a (OCoLC)934424689
|
050 |
|
4 |
|a QA183
|b .B87 2016
|
082 |
0 |
4 |
|a 512/.5
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Burness, Timothy C.,
|d 1979-
|1 https://id.oclc.org/worldcat/entity/E39PCjqFhPq3GwjKCtg8gcwxj3
|
245 |
1 |
0 |
|a Irreducible geometric subgroups of classical algebraic groups /
|c Timothy C. Burness, Soumaia Ghandour, Donna M. Testerman.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2016.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v no. 1130
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
0 |
|t Chapter 1. Introduction
|t Chapter 2. Preliminaries
|t Chapter 3. The $\C _1, \C _3$ and $\C _6$ collections
|t Chapter 4. Imprimitive subgroups
|t Chapter 5. Tensor product subgroups, I
|t Chapter 6. Tensor product subgroups, II.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Let G be a simple classical algebraic group over an algebraically closed field K of characteristic p \ge 0 with natural module W. Let H be a closed subgroup of G and let V be a non-trivial irreducible tensor-indecomposable p-restricted rational KG-module such that the restriction of V to H is irreducible. In this paper the authors classify the triples (G, H, V) of this form, where H is a disconnected maximal positive-dimensional closed subgroup of G preserving a natural geometric structure on W.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometric group theory.
|
650 |
|
0 |
|a Linear algebraic groups.
|
650 |
|
6 |
|a Théorie géométrique des groupes.
|
650 |
|
6 |
|a Groupes linéaires algébriques.
|
650 |
|
7 |
|a Geometric group theory
|2 fast
|
650 |
|
7 |
|a Linear algebraic groups
|2 fast
|
700 |
1 |
|
|a Ghandour, Soumaia,
|d 1980-
|1 https://id.oclc.org/worldcat/entity/E39PCjHbVT64Q76b9J3mtPWMj3
|
700 |
1 |
|
|a Testerman, Donna M.,
|d 1960-
|1 https://id.oclc.org/worldcat/entity/E39PBJwtgMfhdBj8TcJTWrtBT3
|
758 |
|
|
|i has work:
|a Irreducible geometric subgroups of classical algebraic groups (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGKjjFdWgcCChQC7vfDrdP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Burness, Timothy C., 1979-
|t Irreducible geometric subgroups of classical algebraic groups /
|x 0065-9266
|z 9781470414948
|w (DLC) 2015033097
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901849
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4901849
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14681432
|
994 |
|
|
|a 92
|b IZTAP
|