|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn934424688 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
151113s2016 riu ob 000 0 eng d |
040 |
|
|
|a LLB
|b eng
|e rda
|e pn
|c LLB
|d OCLCO
|d COO
|d OCLCF
|d UAB
|d YDX
|d EBLCP
|d IDB
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d LOA
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781470427412
|q (online)
|
020 |
|
|
|a 1470427419
|q (online)
|
020 |
|
|
|a 9781470414603
|q (alk. paper)
|
020 |
|
|
|a 1470414600
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)934424688
|
050 |
|
4 |
|a QA614.73
|b .D37 2016
|
082 |
0 |
4 |
|a 514/.74
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Daskalopoulos, Georgios,
|d 1963-
|1 https://id.oclc.org/worldcat/entity/E39PCjKD8kCrcvBvpX7mW6Fjhb
|
245 |
1 |
0 |
|a On the singular set of harmonic maps into DM-complexes /
|c Georgios Daskalopoulos, Chikako Mese.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2016.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v no. 1129
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
0 |
|t Chapter 1. Introduction
|t Chapter 2. Harmonic maps into NPC spaces and DM-complexes
|t Chapter 3. Regular and Singular points
|t Chapter 4. Metric estimates near a singular point
|t Chapter 5. Assumptions
|t Chapter 6. The Target Variation
|t Chapter 7. Lower Order Bound
|t Chapter 8. The Domain variation
|t Chapter 9. Order Function
|t Chapter 10. The Gap Theorem
|t Chapter 11. Proof of Theorems \ref MAINTHEOREM-\ref GAPTHEOREM*
|t Appendix A. Appendix 1
|t Appendix B. Appendix 2.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a We prove that the singular set of a harmonic map from a smooth Riemannian domain to a Riemannian DM-complex is of Hausdorff codimension at least two. We also explore monotonicity formulas and an order gap theorem for approximately harmonic maps. These regularity results have applications to rigidity problems examined in subsequent articles.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Harmonic maps.
|
650 |
|
0 |
|a Differentiable manifolds.
|
650 |
|
6 |
|a Applications harmoniques.
|
650 |
|
6 |
|a Variétés différentiables.
|
650 |
|
7 |
|a Differentiable manifolds
|2 fast
|
650 |
|
7 |
|a Harmonic maps
|2 fast
|
700 |
1 |
|
|a Mese, Chikako,
|d 1968-
|1 https://id.oclc.org/worldcat/entity/E39PBJbWBJrK4kXjPMYVTqgtKd
|
758 |
|
|
|i has work:
|a On the singular set of harmonic maps into DM-complexes (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGdGdF3FvqYhJJyfdjhp8y
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Daskalopoulos, Georgios, 1963-
|t On the singular set of harmonic maps into DM-complexes /
|x 0065-9266
|z 9781470414603
|w (DLC) 2015033756
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901848
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444981
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4901848
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14681431
|
994 |
|
|
|a 92
|b IZTAP
|