Cargando…

On the singular set of harmonic maps into DM-complexes /

We prove that the singular set of a harmonic map from a smooth Riemannian domain to a Riemannian DM-complex is of Hausdorff codimension at least two. We also explore monotonicity formulas and an order gap theorem for approximately harmonic maps. These regularity results have applications to rigidity...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Daskalopoulos, Georgios, 1963-
Otros Autores: Mese, Chikako, 1968-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society, no. 1129
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn934424688
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 151113s2016 riu ob 000 0 eng d
040 |a LLB  |b eng  |e rda  |e pn  |c LLB  |d OCLCO  |d COO  |d OCLCF  |d UAB  |d YDX  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d LOA  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470427412  |q (online) 
020 |a 1470427419  |q (online) 
020 |a 9781470414603  |q (alk. paper) 
020 |a 1470414600  |q (alk. paper) 
035 |a (OCoLC)934424688 
050 4 |a QA614.73  |b .D37 2016 
082 0 4 |a 514/.74  |2 23 
049 |a UAMI 
100 1 |a Daskalopoulos, Georgios,  |d 1963-  |1 https://id.oclc.org/worldcat/entity/E39PCjKD8kCrcvBvpX7mW6Fjhb 
245 1 0 |a On the singular set of harmonic maps into DM-complexes /  |c Georgios Daskalopoulos, Chikako Mese. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v no. 1129 
504 |a Includes bibliographical references. 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Harmonic maps into NPC spaces and DM-complexes  |t Chapter 3. Regular and Singular points  |t Chapter 4. Metric estimates near a singular point  |t Chapter 5. Assumptions  |t Chapter 6. The Target Variation  |t Chapter 7. Lower Order Bound  |t Chapter 8. The Domain variation  |t Chapter 9. Order Function  |t Chapter 10. The Gap Theorem  |t Chapter 11. Proof of Theorems \ref MAINTHEOREM-\ref GAPTHEOREM*  |t Appendix A. Appendix 1  |t Appendix B. Appendix 2. 
588 0 |a Print version record. 
520 |a We prove that the singular set of a harmonic map from a smooth Riemannian domain to a Riemannian DM-complex is of Hausdorff codimension at least two. We also explore monotonicity formulas and an order gap theorem for approximately harmonic maps. These regularity results have applications to rigidity problems examined in subsequent articles. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Harmonic maps. 
650 0 |a Differentiable manifolds. 
650 6 |a Applications harmoniques. 
650 6 |a Variétés différentiables. 
650 7 |a Differentiable manifolds  |2 fast 
650 7 |a Harmonic maps  |2 fast 
700 1 |a Mese, Chikako,  |d 1968-  |1 https://id.oclc.org/worldcat/entity/E39PBJbWBJrK4kXjPMYVTqgtKd 
758 |i has work:  |a On the singular set of harmonic maps into DM-complexes (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGdGdF3FvqYhJJyfdjhp8y  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Daskalopoulos, Georgios, 1963-  |t On the singular set of harmonic maps into DM-complexes /  |x 0065-9266  |z 9781470414603  |w (DLC) 2015033756 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901848  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444981 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901848 
938 |a YBP Library Services  |b YANK  |n 14681431 
994 |a 92  |b IZTAP