Cargando…

Aerospace navigation systems /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Nebylov, A. V. (Aleksandr Vladimirovich) (Editor ), Watson, Joseph, 1931- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chicheter, West Sussex, United Kingdom : John Wiley & Sons, 2016.
Edición:First edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Title Page
  • Copyright Page
  • Contents
  • The Editors
  • Acknowledgments
  • Preface
  • Chapter 1 Inertial Navigation Systems
  • 1.1 Introduction
  • 1.2 The Accelerometer Sensing Equation
  • 1.3 Reference Frames
  • 1.3.1 True Inertial Frame
  • 1.3.2 Earth-Centered Inertial Frame or i-Frame
  • 1.3.3 Earth-Centered Earth-Fixed Frame or e-Frame
  • 1.3.4 Navigation Frame
  • 1.3.5 Body Frame
  • 1.3.6 Sensor Frames (a-Frame, g-Frame)
  • 1.4 Direction Cosine Matrices and Quaternions
  • 1.5 Attitude Update
  • 1.5.1 Body Frame Update
  • 1.5.2 Navigation Frame Update
  • 1.5.3 Euler Angle Extraction
  • 1.6 Navigation Mechanization
  • 1.7 Position Update
  • 1.8 INS Initialization
  • 1.9 INS Error Characterization
  • 1.9.1 Mounting Errors
  • 1.9.2 Initialization Errors
  • 1.9.3 Sensor Errors
  • 1.9.4 Gravity Model Errors
  • 1.9.5 Computational Errors
  • 1.9.6 Simulation Examples
  • 1.10 Calibration and Compensation
  • 1.11 Production Example
  • References
  • Chapter 2 Satellite Navigation Systems
  • 2.1 Introduction
  • 2.2 Preliminary Considerations
  • 2.3 Navigation Problems Using Satellite Systems
  • 2.3.1 The Geometrical Problem
  • 2.3.2 Reference Coordinate Systems
  • 2.3.3 The Classical Mathematical Model
  • 2.4 Satellite Navigation Systems (GNSS)
  • 2.4.1 The Global Positioning System
  • 2.4.2 GLONASS
  • 2.4.3 Galileo
  • 2.4.4 BeiDou (Compass)
  • 2.4.5 State and Development of the Japanese QZSS
  • 2.4.6 State and Development of the IRNSS
  • 2.5 GNSS Observables
  • 2.5.1 Carrier-Phase Observables
  • 2.5.2 Doppler Frequency Observables
  • 2.5.3 Single-Difference Observables
  • 2.5.4 Double-Difference Observables
  • 2.5.5 Triple-Difference Observables
  • 2.5.6 Linear Combinations
  • 2.5.7 Integer Ambiguity Resolution
  • 2.6 Sources of Error
  • 2.6.1 Ionosphere Effects
  • 2.6.2 Troposphere Effects
  • 2.6.3 Selective Availability (SA) Effects.
  • 2.6.4 Multipath Effects
  • 2.6.5 Receiver Noise
  • 2.7 GNSS Receivers
  • 2.7.1 Receiver Architecture
  • 2.7.2 Carrier Smoothing
  • 2.7.3 Attitude Estimation
  • 2.7.4 Typical Receivers on the Market
  • 2.8 Augmentation Systems
  • 2.8.1 Differential Techniques
  • 2.8.2 The Precise Point Positioning (PPP) Technique
  • 2.8.3 Satellite-Based Augmentation Systems
  • 2.9 Integration of GNSS with Other Sensors
  • 2.9.1 GNSS/INS
  • 2.10 Aerospace Applications
  • 2.10.1 The Problem of Integrity
  • 2.10.2 Air Navigation: En Route, Approach, and Landing
  • 2.10.3 Surveillance and Air Traffic Control (ATC)
  • 2.10.4 Space Vehicle Navigation
  • References
  • Chapter 3 Radio Systems for Long-Range Navigation
  • 3.1 Introduction
  • 3.2 Principles of Operation
  • 3.3 Coverage
  • 3.4 Interference in VLF and LF Radio-Navigation Systems
  • 3.5 Error Budget
  • 3.5.1 Loran-C and CHAYKA Error Budget
  • 3.5.2 ALPHA and OMEGA Error Budget
  • 3.5.3 Position Error
  • 3.6 LF Radio System Modernization
  • 3.6.1 EUROFIX-Regional GNSS Differential Subsystem
  • 3.6.2 Enhanced Loran
  • 3.6.3 Enhanced Differential Loran
  • 3.7 User Equipment
  • References
  • Chapter 4 Radio Systems for Short-Range Navigation
  • 4.1 Overview of Short-Range Navigational Aids
  • 4.2 Nondirectional Radio Beacon and the "Automatic Direction Finder"
  • 4.2.1 Operation and Controls
  • 4.3 VHF Omni-Directional Radio Range
  • 4.3.1 Basic VOR Principles
  • 4.3.2 The Doppler VOR
  • 4.4 DME and TACAN Systems
  • 4.4.1 DME Equipment
  • 4.4.2 Tactical Air Navigation
  • 4.4.3 The VORTAC Station
  • 4.4.4 The Radiotechnical Short-Range Navigation System
  • 4.4.5 Principles of Operation and Construction of the RSBN System
  • References
  • Chapter 5 Radio Technical Landing Systems
  • 5.1 Instrument Landing Systems
  • 5.1.1 The Marker Beacons
  • 5.1.2 Approach Guidance-Ground Installations.
  • 5.1.3 Approach Guidance-Aircraft Equipment
  • 5.1.4 CAT II and III Landing
  • 5.2 Microwave Landing Systems-Current Status
  • 5.2.1 MLS Basic Concepts
  • 5.2.2 MLS Functionality
  • 5.3 Ground-Based Augmentation System
  • 5.3.1 Current Status
  • 5.3.2 Technical Features
  • 5.4 Lighting Systems-Airport Visual Landing Aids and Other Short-Range Optical Navigation Systems
  • 5.4.1 The Visual Approach Slope Indicator
  • 5.4.2 Precision Approach Path Indicator
  • 5.4.3 The Final Approach Runway Occupancy Signal
  • References
  • Chapter 6 Correlated-Extremal Systems and Sensors
  • 6.1 Construction Principles
  • 6.1.1 General Information
  • 6.1.2 Mathematical Foundation
  • 6.1.3 Basic CES Elements and Units
  • 6.1.4 Analog and Digital Implementation Methods
  • 6.2 Image Sensors for CES
  • 6.3 Aviation and Space CES
  • 6.3.1 Astro-Orientation CES
  • 6.3.2 Navigational CES
  • 6.3.3 Aviation Guidance via Television Imaging
  • 6.4 Prospects for CES Development
  • 6.4.1 Combined CES
  • 6.4.2 Micro-Miniaturization of CES and the Constituent Components
  • 6.4.3 Prospects for CES Improvement
  • 6.4.4 New Properties and Perspectives in CES
  • References
  • Chapter 7 Homing Devices
  • 7.1 Introduction
  • 7.2 Definition of Homing Devices
  • 7.2.1 Homing Systems for Autonomous and Group Operations
  • 7.2.2 Guidance and Homing Systems
  • 7.2.3 Principles and Classification of Homing Devices
  • 7.3 Homing Device Functioning in Signal Fields
  • 7.3.1 Characteristics of Homing Device Signal Fields
  • 7.3.2 Optoelectronic Sensors for Homing Devices
  • 7.3.3 Radar Homing Devices
  • 7.4 Characteristics of Homing Methods
  • 7.4.1 Aerospace Vehicle Homing Methods
  • 7.4.2 Homing Device Dynamic Errors
  • 7.5 Homing Device Efficiency
  • 7.5.1 Homing Device Accuracy
  • 7.5.2 Homing Device Dead Zones
  • 7.6 Radio Proximity Fuze.
  • 7.7 Homing Device Functioning Under Jamming Conditions
  • 7.8 Intelligent Homing Devices
  • References
  • Chapter 8 Optimal and Suboptimal Filtering in Integrated Navigation Systems
  • 8.1 Introduction
  • 8.2 Filtering Problems: Main Approaches and Algorithms
  • 8.2.1 The Least Squares Method
  • 8.2.2 The Wiener Approach
  • 8.2.3 The Kalman Approach
  • 8.2.4 Comparison of Kalman and Wiener Approaches
  • 8.2.5 Beyond the Kalman Filter
  • 8.3 Filtering Problems for Integrated Navigation Systems
  • 8.3.1 Filtering Problems Encountered in the Processing of Data from Systems Directly Measuring the Parameters to be Estimated
  • 8.3.2 Filtering Problems in Aiding a Navigation System (Linearized Case)
  • 8.3.3 Filtering Problems in Aiding a Navigation System (Nonlinear Case)
  • 8.4 Filtering Algorithms for Processing Data from Inertial and Satellite Systems
  • 8.4.1 Inertial System Error Models
  • 8.4.2 The Filtering Problem in Loosely Coupled INS/SNS
  • 8.4.3 The Filtering Problem in Tightly Coupled INS/SNS
  • 8.4.4 Example of Filtering Algorithms for an Integrated INS/SNS
  • 8.5 Filtering and Smoothing Problems Based on the Combined Use of Kalman and Wiener Approaches for Aviation Gravimetry
  • 8.5.1 Statement of the Optimal Filtering and Smoothing Problems in the Processing of Gravimeter and Satellite Measurements
  • 8.5.2 Problem Statement and Solution within the Kalman Approach
  • 8.5.3 Solution Using the Method of PSD Local Approximations
  • Acknowledgment
  • References
  • Chapter 9 Navigational Displays
  • 9.1 Introduction to Modern Aerospace Navigational Displays
  • 9.1.1 The Human Interface for Display Control-Buttonology
  • 9.1.2 Rapidly Configurable Displays for Glass Cockpit Customization Purposes
  • 9.2 A Global Positioning System Receiver and Map Display
  • 9.2.1 Databases
  • 9.2.2 Fully Integrated Flight Control.
  • 9.2.3 Advanced AHRS Architecture
  • 9.2.4 Weather and Digital Audio Functions
  • 9.2.5 Traffic Information Service
  • 9.3 Automatic Dependent Surveillance-Broadcast (ADS-B) System Displays
  • 9.4 Collision Avoidance and Ground Warning Displays
  • 9.4.1 Terrain Awareness Warning System (TAWS): Classes A and B
  • Appendix: Terminology and Review of Some US Federal Aviation Regulations
  • References
  • Chapter 10 Unmanned Aerospace Vehicle Navigation
  • 10.1 The Unmanned Aerospace Vehicle
  • 10.2 Small-Sized UAVs
  • 10.3 The UAV as a Controlled Object
  • 10.4 UAV Navigation
  • 10.4.1 Methods of Controlling Flight Along Intended Tracks
  • 10.4.2 Basic Equations for UAV Inertial Navigation
  • 10.4.3 Algorithms for Four-Dimensional (Terminal) Navigation
  • 10.5 Examples of Construction and Technical Characteristics of the Onboard Avionic Control Equipment
  • 10.6 Small-Sized Unmanned WIG and Amphibious UAVs
  • 10.6.1 Emerging Trends in the Development of Unmanned WIG UAVs and USVs, and Amphibious UAVs
  • 10.6.2 Radio Altimeter and Inertial Sensor Integration
  • 10.6.3 Development of Control Systems for Unmanned WIG Aircraft and Amphibious UAVs
  • 10.6.4 The Design of High-precision Instruments and Sensor Integration for the Measurement of Low Altitudes
  • References
  • Index
  • Supplemental Images
  • EULA.