Aerospace navigation systems /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chicheter, West Sussex, United Kingdom :
John Wiley & Sons,
2016.
|
Edición: | First edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Title Page
- Copyright Page
- Contents
- The Editors
- Acknowledgments
- Preface
- Chapter 1 Inertial Navigation Systems
- 1.1 Introduction
- 1.2 The Accelerometer Sensing Equation
- 1.3 Reference Frames
- 1.3.1 True Inertial Frame
- 1.3.2 Earth-Centered Inertial Frame or i-Frame
- 1.3.3 Earth-Centered Earth-Fixed Frame or e-Frame
- 1.3.4 Navigation Frame
- 1.3.5 Body Frame
- 1.3.6 Sensor Frames (a-Frame, g-Frame)
- 1.4 Direction Cosine Matrices and Quaternions
- 1.5 Attitude Update
- 1.5.1 Body Frame Update
- 1.5.2 Navigation Frame Update
- 1.5.3 Euler Angle Extraction
- 1.6 Navigation Mechanization
- 1.7 Position Update
- 1.8 INS Initialization
- 1.9 INS Error Characterization
- 1.9.1 Mounting Errors
- 1.9.2 Initialization Errors
- 1.9.3 Sensor Errors
- 1.9.4 Gravity Model Errors
- 1.9.5 Computational Errors
- 1.9.6 Simulation Examples
- 1.10 Calibration and Compensation
- 1.11 Production Example
- References
- Chapter 2 Satellite Navigation Systems
- 2.1 Introduction
- 2.2 Preliminary Considerations
- 2.3 Navigation Problems Using Satellite Systems
- 2.3.1 The Geometrical Problem
- 2.3.2 Reference Coordinate Systems
- 2.3.3 The Classical Mathematical Model
- 2.4 Satellite Navigation Systems (GNSS)
- 2.4.1 The Global Positioning System
- 2.4.2 GLONASS
- 2.4.3 Galileo
- 2.4.4 BeiDou (Compass)
- 2.4.5 State and Development of the Japanese QZSS
- 2.4.6 State and Development of the IRNSS
- 2.5 GNSS Observables
- 2.5.1 Carrier-Phase Observables
- 2.5.2 Doppler Frequency Observables
- 2.5.3 Single-Difference Observables
- 2.5.4 Double-Difference Observables
- 2.5.5 Triple-Difference Observables
- 2.5.6 Linear Combinations
- 2.5.7 Integer Ambiguity Resolution
- 2.6 Sources of Error
- 2.6.1 Ionosphere Effects
- 2.6.2 Troposphere Effects
- 2.6.3 Selective Availability (SA) Effects.
- 2.6.4 Multipath Effects
- 2.6.5 Receiver Noise
- 2.7 GNSS Receivers
- 2.7.1 Receiver Architecture
- 2.7.2 Carrier Smoothing
- 2.7.3 Attitude Estimation
- 2.7.4 Typical Receivers on the Market
- 2.8 Augmentation Systems
- 2.8.1 Differential Techniques
- 2.8.2 The Precise Point Positioning (PPP) Technique
- 2.8.3 Satellite-Based Augmentation Systems
- 2.9 Integration of GNSS with Other Sensors
- 2.9.1 GNSS/INS
- 2.10 Aerospace Applications
- 2.10.1 The Problem of Integrity
- 2.10.2 Air Navigation: En Route, Approach, and Landing
- 2.10.3 Surveillance and Air Traffic Control (ATC)
- 2.10.4 Space Vehicle Navigation
- References
- Chapter 3 Radio Systems for Long-Range Navigation
- 3.1 Introduction
- 3.2 Principles of Operation
- 3.3 Coverage
- 3.4 Interference in VLF and LF Radio-Navigation Systems
- 3.5 Error Budget
- 3.5.1 Loran-C and CHAYKA Error Budget
- 3.5.2 ALPHA and OMEGA Error Budget
- 3.5.3 Position Error
- 3.6 LF Radio System Modernization
- 3.6.1 EUROFIX-Regional GNSS Differential Subsystem
- 3.6.2 Enhanced Loran
- 3.6.3 Enhanced Differential Loran
- 3.7 User Equipment
- References
- Chapter 4 Radio Systems for Short-Range Navigation
- 4.1 Overview of Short-Range Navigational Aids
- 4.2 Nondirectional Radio Beacon and the "Automatic Direction Finder"
- 4.2.1 Operation and Controls
- 4.3 VHF Omni-Directional Radio Range
- 4.3.1 Basic VOR Principles
- 4.3.2 The Doppler VOR
- 4.4 DME and TACAN Systems
- 4.4.1 DME Equipment
- 4.4.2 Tactical Air Navigation
- 4.4.3 The VORTAC Station
- 4.4.4 The Radiotechnical Short-Range Navigation System
- 4.4.5 Principles of Operation and Construction of the RSBN System
- References
- Chapter 5 Radio Technical Landing Systems
- 5.1 Instrument Landing Systems
- 5.1.1 The Marker Beacons
- 5.1.2 Approach Guidance-Ground Installations.
- 5.1.3 Approach Guidance-Aircraft Equipment
- 5.1.4 CAT II and III Landing
- 5.2 Microwave Landing Systems-Current Status
- 5.2.1 MLS Basic Concepts
- 5.2.2 MLS Functionality
- 5.3 Ground-Based Augmentation System
- 5.3.1 Current Status
- 5.3.2 Technical Features
- 5.4 Lighting Systems-Airport Visual Landing Aids and Other Short-Range Optical Navigation Systems
- 5.4.1 The Visual Approach Slope Indicator
- 5.4.2 Precision Approach Path Indicator
- 5.4.3 The Final Approach Runway Occupancy Signal
- References
- Chapter 6 Correlated-Extremal Systems and Sensors
- 6.1 Construction Principles
- 6.1.1 General Information
- 6.1.2 Mathematical Foundation
- 6.1.3 Basic CES Elements and Units
- 6.1.4 Analog and Digital Implementation Methods
- 6.2 Image Sensors for CES
- 6.3 Aviation and Space CES
- 6.3.1 Astro-Orientation CES
- 6.3.2 Navigational CES
- 6.3.3 Aviation Guidance via Television Imaging
- 6.4 Prospects for CES Development
- 6.4.1 Combined CES
- 6.4.2 Micro-Miniaturization of CES and the Constituent Components
- 6.4.3 Prospects for CES Improvement
- 6.4.4 New Properties and Perspectives in CES
- References
- Chapter 7 Homing Devices
- 7.1 Introduction
- 7.2 Definition of Homing Devices
- 7.2.1 Homing Systems for Autonomous and Group Operations
- 7.2.2 Guidance and Homing Systems
- 7.2.3 Principles and Classification of Homing Devices
- 7.3 Homing Device Functioning in Signal Fields
- 7.3.1 Characteristics of Homing Device Signal Fields
- 7.3.2 Optoelectronic Sensors for Homing Devices
- 7.3.3 Radar Homing Devices
- 7.4 Characteristics of Homing Methods
- 7.4.1 Aerospace Vehicle Homing Methods
- 7.4.2 Homing Device Dynamic Errors
- 7.5 Homing Device Efficiency
- 7.5.1 Homing Device Accuracy
- 7.5.2 Homing Device Dead Zones
- 7.6 Radio Proximity Fuze.
- 7.7 Homing Device Functioning Under Jamming Conditions
- 7.8 Intelligent Homing Devices
- References
- Chapter 8 Optimal and Suboptimal Filtering in Integrated Navigation Systems
- 8.1 Introduction
- 8.2 Filtering Problems: Main Approaches and Algorithms
- 8.2.1 The Least Squares Method
- 8.2.2 The Wiener Approach
- 8.2.3 The Kalman Approach
- 8.2.4 Comparison of Kalman and Wiener Approaches
- 8.2.5 Beyond the Kalman Filter
- 8.3 Filtering Problems for Integrated Navigation Systems
- 8.3.1 Filtering Problems Encountered in the Processing of Data from Systems Directly Measuring the Parameters to be Estimated
- 8.3.2 Filtering Problems in Aiding a Navigation System (Linearized Case)
- 8.3.3 Filtering Problems in Aiding a Navigation System (Nonlinear Case)
- 8.4 Filtering Algorithms for Processing Data from Inertial and Satellite Systems
- 8.4.1 Inertial System Error Models
- 8.4.2 The Filtering Problem in Loosely Coupled INS/SNS
- 8.4.3 The Filtering Problem in Tightly Coupled INS/SNS
- 8.4.4 Example of Filtering Algorithms for an Integrated INS/SNS
- 8.5 Filtering and Smoothing Problems Based on the Combined Use of Kalman and Wiener Approaches for Aviation Gravimetry
- 8.5.1 Statement of the Optimal Filtering and Smoothing Problems in the Processing of Gravimeter and Satellite Measurements
- 8.5.2 Problem Statement and Solution within the Kalman Approach
- 8.5.3 Solution Using the Method of PSD Local Approximations
- Acknowledgment
- References
- Chapter 9 Navigational Displays
- 9.1 Introduction to Modern Aerospace Navigational Displays
- 9.1.1 The Human Interface for Display Control-Buttonology
- 9.1.2 Rapidly Configurable Displays for Glass Cockpit Customization Purposes
- 9.2 A Global Positioning System Receiver and Map Display
- 9.2.1 Databases
- 9.2.2 Fully Integrated Flight Control.
- 9.2.3 Advanced AHRS Architecture
- 9.2.4 Weather and Digital Audio Functions
- 9.2.5 Traffic Information Service
- 9.3 Automatic Dependent Surveillance-Broadcast (ADS-B) System Displays
- 9.4 Collision Avoidance and Ground Warning Displays
- 9.4.1 Terrain Awareness Warning System (TAWS): Classes A and B
- Appendix: Terminology and Review of Some US Federal Aviation Regulations
- References
- Chapter 10 Unmanned Aerospace Vehicle Navigation
- 10.1 The Unmanned Aerospace Vehicle
- 10.2 Small-Sized UAVs
- 10.3 The UAV as a Controlled Object
- 10.4 UAV Navigation
- 10.4.1 Methods of Controlling Flight Along Intended Tracks
- 10.4.2 Basic Equations for UAV Inertial Navigation
- 10.4.3 Algorithms for Four-Dimensional (Terminal) Navigation
- 10.5 Examples of Construction and Technical Characteristics of the Onboard Avionic Control Equipment
- 10.6 Small-Sized Unmanned WIG and Amphibious UAVs
- 10.6.1 Emerging Trends in the Development of Unmanned WIG UAVs and USVs, and Amphibious UAVs
- 10.6.2 Radio Altimeter and Inertial Sensor Integration
- 10.6.3 Development of Control Systems for Unmanned WIG Aircraft and Amphibious UAVs
- 10.6.4 The Design of High-precision Instruments and Sensor Integration for the Measurement of Low Altitudes
- References
- Index
- Supplemental Images
- EULA.