Microchannel phase change transport phenomena /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Butterworth-Heinemann,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Microchannel Phase Change Transport Phenomena; Copyright; Contents; List of Contributors; Foreword by G.F. Hewitt; Foreword by Cees W.M. van der Geld; Critical Review by Masahiro Kawaji; Critical Review by Lounès Tadrist; Editorial by Sujoy Kumar Saha; 1
- Introduction; References; 2
- Onset of Nucleate Boiling, Void Fraction, and Liquid Film Thickness; 2.1 Onset of Nucleate Boiling; 2.1.1 Introduction; 2.1.2 Nucleation during Pool Boiling; 2.1.3 Effect of Various Parameters on ONB during Flow Boiling; 2.1.3.1 Effect of Flow Rate; 2.1.3.2 Effect of Microchannel Size and Geometry.
- 2.1.3.3 Effect of Heat Flux2.1.3.4 Effect of Subcooling; 2.1.3.5 Effect of Dissolved Gasses; 2.1.3.6 Effect of Contact Angle; 2.1.4 Influence of ONB on Boiling Phenomenon; 2.1.5 Recent Trends; 2.2 Void Fraction in Microchannels; 2.2.1 Introduction; 2.2.2 Different Methods of Void Fraction Measurement; 2.2.2.1 Experimental Methods; 2.2.2.2 Empirical Correlation for Void Fraction; 2.3 Liquid Film Thickness Measurement; 2.3.1 Introduction; 2.3.2 Methods of Measurement; 2.3.2.1 Acoustics Method; 2.3.2.2 Electrical Methods; 2.3.2.3 Optical Methods; References.
- 3
- Flow Patterns and Bubble Growth in Microchannels3.1 Introduction; 3.2 Criteria for Distinction of Macro and Microchannels; 3.3 Fundamentals of Flow Patterns in Macro and Microchannels; 3.4 Flow Patterns and Flow Pattern Maps in Microchannels; 3.4.1 Current Research Progress on Flow Patterns in Microchannels; 3.4.2 Proposed Flow Pattern Maps in Microchannels; 3.5 Current Research Progress on Bubble Growth in Microchannels; 3.6 Concluding Remarks; References; 4
- Flow Boiling Heat Transfer with Models in Microchannels; 4.1 Introduction; 4.2 Flow Boiling Heat Transfer in Microchannels.
- 4.2.1 Fundamental Issues in Microchannel Flow Boiling4.2.2 Current Research Progress on Flow Boiling Heat Transfer and Mechanisms in Microchannels; 4.3 Correlations and Models of Flow Boiling Heat Transfer in Microchannels; 4.3.1 Classification of Flow Boiling Heat Transfer Models; 4.3.2 Prediction Methods for Flow Boiling Heat Transfer in Microchannels; 4.4 Models of Flow Boiling Heat Transfer for Specific Flow Patterns in Microchannels; 4.5 Concluding Remarks; Nomenclature; References; 5
- Pressure Drop; 5.1 Introduction; 5.2 Studies on Flow Characteristics of Water in Microtubes.
- 5.2.1 Effect of Surface Condition on Flow Characteristics5.2.2 Impact of Surface Roughness; 5.2.3 Effect of Geometric Parameters; 5.3 Effect of Header Shapes on Fluid Flow Characteristics; 5.3.1 Effect of Coating and Header Combination; 5.4 Pressure Loss Investigation in Rectangular Channels with Large Aspect Ratio; 5.4.1 Pressure Drop Observations; 5.5 Effect of Shape and Geometrical Parameters on Pressure Drop; 5.5.1 Effect of Heat Flux on Pressure Drop; 5.5.2 Effect of Aspect Ratio on Pressure Drop; Closure; Nomenclature; References; 6
- Critical Heat Flux for Boiling in Microchannels.