Cargando…

Mastering SciPy.

Implement state-of-the-art techniques to visualize solutions to challenging problems in scientific computing, with the use of the SciPy stackAbout This Book Master the theory and algorithms behind numerical recipes and how they can be applied to real-world problems Learn to combine the most appropri...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Blanco-Silva, Francisco J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2015.
Edición:1.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn930018527
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 151120s2015 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d YDXCP  |d COO  |d OCLCO  |d OCLCF  |d OCLCQ  |d DEBBG  |d DEBSZ  |d OCLCQ  |d FEM  |d IDB  |d OCLCQ  |d MERUC  |d OCLCQ  |d UKAHL  |d UKMGB  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB5G9408  |2 bnb 
016 7 |a 017626623  |2 Uk 
019 |a 968106260  |a 968989587 
020 |a 1783984759  |q (ebk) 
020 |a 9781783984756  |q (ebk) 
020 |a 9781783984749 
020 |a 1783984740 
020 |z 1783984740 
029 1 |a AU@  |b 000057303311 
029 1 |a AU@  |b 000062335069 
029 1 |a CHNEW  |b 000893863 
029 1 |a CHVBK  |b 374530203 
029 1 |a DEBBG  |b BV043627511 
029 1 |a DEBSZ  |b 473872943 
029 1 |a UKMGB  |b 017626623 
035 |a (OCoLC)930018527  |z (OCoLC)968106260  |z (OCoLC)968989587 
037 |a 870208  |b MIL 
050 4 |a T55.4-60.8 
082 0 4 |a 005.133 
049 |a UAMI 
100 1 |a Blanco-Silva, Francisco J. 
245 1 0 |a Mastering SciPy. 
250 |a 1. 
260 |b Packt Publishing,  |c 2015. 
300 |a 1 online resource (404) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
588 0 |a Print version record. 
520 |a Implement state-of-the-art techniques to visualize solutions to challenging problems in scientific computing, with the use of the SciPy stackAbout This Book Master the theory and algorithms behind numerical recipes and how they can be applied to real-world problems Learn to combine the most appropriate built-in functions from the SciPy stack by understanding the connection between the sources of your problem, volume of data, or computer architecture A comprehensive coverage of all the mathematical techniques needed to solve the presented topics, with a discussion of the relevant algorithms built in the SciPy stackWho This Book Is For If you are a mathematician, engineer, or computer scientist with a proficiency in Python and familiarity with IPython, this is the book for you. Some basic knowledge of numerical methods in scientific computing would be helpful. What You Will Learn Master relevant algorithms used in symbolic or numerical mathematics to address approximation, interpolation, differentiation, integration, root-finding, and optimization of scalar or multi-variate functions Develop different algorithms and strategies to efficiently store and manipulate large matrices of data, in particular to solve systems of linear equations, or compute their eigenvalues/eigenvectors Understand how to model physical problems with systems of differential equations and distinguish the factors that dictate the strategies to solve them Perform statistical analysis, hypothesis test design and resolution, or data mining at a higher level, and apply them to real-life problems in the field of data analysis Gain insights on the power of distances, Delaunay triangulations and Voronoi diagrams for Computational Geometry, and apply them to various engineering problems Familiarize yourself with different techniques in signal/image processing, including filtering audio, images, or video to extract information, features, or remove componentsIn Detail The SciPy stack is a collection of open source libraries of the powerful scripting language Python, together with its interactive shells. This environment offers a cutting-edge platform for numerical computation, programming, visualization and publishing, and is used by some of the world's leading mathematicians, scientists, and engineers. It works on any operating system that supports Python and is very easy to install, and completely free of charge! It can effectively transform into a data-processing and system-prototyping environment, directly rivalling MATLAB and Octave. This book goes beyond a mere description of the different built-in functions coded in the libraries from the SciPy stack. It presents you with a solid mathematical and computational background to help you identify the right tools for each problem in scientific computing and visualization. You will gain an insight into the best practices with numerical methods depending on the amount or type of data, properties of the mathematical tools employed, or computer architecture, among other factors. The book kicks off with a concise exploration of the basics of numerical linear algebra and graph theory for the treatment of problems that handle large data sets or matrices. In the subsequent chapters, you will delve into the depths of algorithms in symbolic algebra and numerical analysis to address modeling/simulation of various real-world problems with functions (through interpolation, approximation, or creation of systems of differential equations), and extract their representing features (zeros, extrema, integration or differentiation). Lastly, you will move on to advanced concepts of data analysis, image/signal processing, and computational geometry. Style and approach Packed with real-world examples, this book explores the mathematical techniques needed to solve the presented topics, and focuses on the algorithms built in the SciPy stack. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Python (Computer program language) 
650 0 |a Numerical analysis. 
650 6 |a Python (Langage de programmation) 
650 6 |a Analyse numérique. 
650 7 |a Numerical analysis  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
758 |i has work:  |a Mastering SciPy (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH4R8yR3krvD46kbYMTY6C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |t Blanco-Silva, Francisco J. Mastering SciPy 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4191173  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29615236 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4191173 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33163084 
938 |a YBP Library Services  |b YANK  |n 12702961 
994 |a 92  |b IZTAP