Cargando…

Magnetism of surfaces, interfaces, and nanoscale materials. Volume 5 /

In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant mag...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Camley, Robert E., Celinski, Zbigniew, Stamps, Robert L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, ©2016.
Colección:Handbook of surface science ; v. 5.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Magnetism of Surfaces, Interfaces, and Nanoscale Materials
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1: Growth and Characterization of Magnetic Thin Film and Nanostructures
  • 1. Introduction
  • 2. Thin-Film Growth
  • 2.1. Thermal and Electron Beam Evaporation
  • 2.2. Sputter Deposition
  • 2.2.1. DC Sputter Deposition
  • 2.2.2. RF Sputter Deposition
  • 2.2.3. Magnetron Sputter Deposition
  • 3. Characterization Techniques
  • 3.1. Surface Characterization
  • 3.1.1. Atomic Force Microscopy
  • 3.1.2. Magnetic Force Microscopy3.2. Static Magnetic Characterization
  • 3.2.1. MOKE Spectroscopy
  • 3.2.2. Vibrating Sample Magnetometry
  • 3.3. Dynamic Magnetic Characterization
  • 3.3.1. FMR Spectroscopy
  • 3.3.2. BLS Spectroscopy
  • 4. Magnetic Nanostructures
  • 4.1. Lithography
  • 4.2. Pattern Transfer
  • 4.3. Practical Examples
  • 4.3.1. Planar Magnetic Nanostructures
  • 4.3.2. Thickness-Modulated Magnetic Nanostructures
  • 4.3.3. Bicomponent Magnetic Nanostructures
  • 5. Conclusion
  • Acknowledgments
  • References
  • Chapter 2: Element-Specific Probes of Magnetism1. Introduction
  • 2. Fundamental Aspects of Optical Excitation
  • 2.1. Electronic States in Solids
  • 2.2. Spectroscopy of Core States
  • 2.3. X-Ray Photoemission Spectroscopy
  • 2.4. X-Ray Absorption Spectroscopy
  • 2.5. X-Ray Reflection Spectroscopy
  • 3. Spin-Sensitive Photoemission
  • 3.1. Core-Level Photoemission from Ferromagnets
  • 3.1.1. Spin Polarimeter Schemes
  • 3.1.2. 3s XPS
  • 3.1.3. 2p XPS
  • 3.2. Magnetic Dichroism in Photoemission
  • 3.2.1. Magnetic Circular Dichroism in Photoemission
  • 3.2.2. Role of Angular Selection in Photoemission4. Magnetic Dichroism in X-Ray Absorption
  • 4.1. Magnetic X-Ray Circular Dichroism
  • 4.2. Magnetic X-Ray Linear Dichroism
  • 4.3. Hybrid Systems
  • 5. Magnetic Resonant X-Ray Scattering
  • 5.1. Basic Aspects
  • 5.2. Complex Layered Structures
  • 5.3. Antiferromagnets
  • 6. Addressing Picosecond Magnetization Dynamics
  • 7. Ultrafast Demagnetization Dynamics
  • 8. Summary and Conclusions
  • Acknowledgments
  • References
  • Chapter 3: Magnetization Dynamics
  • 1. Introduction
  • 2. Analytic Results
  • 2.1. Infinitely Extended Flat Plate: In-Plane Field2.2. Spin Waves Propagating Perpendicular to the Surface, Conducting Films
  • 2.3. Surface Modes for Spin Waves Propagating Parallel to the Film Surface
  • 2.4. Infinitely Extended Flat Plate-Perpendicular-to-Plane Magnetization
  • 2.5. Nanostructures
  • 2.6. Antiferromagnets
  • 3. Examples of Experimental Characterization of Ferromagnetic Samples
  • 4. FMR Techniques
  • 4.1. Magnetic Damping
  • 4.2. Broadband FMR-Frequency Swept
  • 4.3. Broadband FMR-Field Swept
  • 4.3.1. Multimode Cavity Configuration