Cargando…

Computational immunology : models and tools /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bassaganya-Riera, Josep (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Academic Press is an imprint of Elsevier, [2015]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Computational Immunology: Models and Tools
  • Copyright Page
  • Contents
  • List of Contributors
  • 1 Introduction to Computational Immunology
  • Overview
  • Modeling Tools and Techniques
  • Use Cases Illustrating the Application of Computational Immunology Technologies
  • Acknowledgments
  • References
  • 2 Computational Modeling
  • Overview on Computational Modeling
  • Translational Research Iterative Modeling Cycle
  • Information and Knowledge Extraction from the Literature
  • Collect New Data and Data from Public Repositories
  • Model Development
  • In Silico Experimentation
  • Validation of Computational Hypotheses and New Knowledge
  • Considerations on Computational Modeling Technologies
  • Computational Modeling Tools for Immunology and Infectious Disease Research
  • Concluding Remarks
  • Acknowledgments
  • References
  • 3 Use of Computational Modeling in Immunological Research
  • Introduction
  • Computational and Mathematical Modeling of the Immune Response to Helicobacter pylori
  • Inflammatory Bowel Disease
  • ODE Model of CD4+ T-Cell Differentiation
  • T Follicular Helper Cell Differentiation
  • Concluding Remarks
  • Acknowledgments
  • References
  • 4 Immunoinformatics Cyberinfrastructure for Modeling and Analytics
  • Introduction
  • Web Portal
  • LabKey-Based Laboratory Information Management System
  • Public Repositories: ImmPort
  • Global Gene Expression Analysis
  • High-Performance Computing Environment
  • HPC Infrastructure for ENISI MSM Modeling
  • CyberInfrastructure for NETwork Science
  • Pathosystems Resource Integration Center
  • Clinical Data Integration
  • Concluding Remarks
  • Acknowledgments
  • Appendix: MIEP Data Uploaded to ImmPort
  • References
  • 5 Ordinary Differential Equations (ODEs) Based Modeling
  • Introduction
  • Modeling Network of Gene Regulation
  • Modeling Signaling Pathways.
  • Modeling Biochemical Reaction Networks
  • Modeling Multiple Scales
  • ODE-Based Modeling Pipeline
  • Model Development
  • Model Calibration
  • Deterministic Simulations
  • Sensitivity Analysis
  • Model-Driven Hypothesis Generation
  • Case Studies: CD4+ T-Cell Differentiation Model
  • Concluding Remarks
  • Acknowledgments
  • References
  • 6 Agent-Based Modeling and High Performance Computing
  • Introduction and Basic Definitions
  • Related Work
  • Technical Implementation of ENISI
  • Formal Representation of ENISI
  • Interaction-Based Approach for Modeling Gut Mucosa: Coevolving Graphical Discrete Dynamical Systems (CGDDS)
  • Modeling Immune System using CGDDS
  • Agent-Based Modeling Using ENISI
  • ENISI HPC Implementation
  • ABM of H. pylori
  • Calibration and Validation of the Preliminary Model
  • Sensitivity Analysis for ABM
  • Influence of Parameters
  • Ranking of Parameters
  • Quantifying Uncertainty
  • Scaling the Sensitivity Analysis Calculations
  • Scalability and Performance
  • Modeling Study Investigating Immune Responses to H. pylori
  • Use Case: Predictive Computational Modeling of the Mucosal Immune Responses During H. pylori Infection
  • Concluding Remarks
  • Acknowledgment
  • References
  • 7 From Big Data Analytics and Network Inference to Systems Modeling
  • Introduction
  • Big Bata Drives Big Models
  • Experimental Planning and Power Analysis
  • RNA-Seq Analysis Pipeline
  • Read Summarization
  • Differential Expression Analysis
  • Time Series Data
  • Unsupervised High-Resolution Clustering
  • Supervised Multistage Clustering to Cluster Genes Based on Pattern of Expression
  • Tools, Techniques, and Pipelines
  • RNA-Seq Analysis in the Cloud
  • RNA Rocket at the PAThosystems Resource Integration Center
  • Network Inference and Analytics
  • Supervised Machine Learning Methods
  • NetGenerator.
  • Adaptive Robust Integrative Analysis for Finding Novel Association
  • Case Study: Reconstructing the Th17 Differentiation Network
  • Concluding Remarks
  • Acknowledgments
  • References
  • 8 Multiscale Modeling: Concepts, Technologies, and Use Cases in Immunology
  • Introduction
  • MSM Concepts and Techniques
  • Modeling Technologies and Tools
  • From Single Scale to MSM
  • Sensitivity Analysis
  • Global versus Local SA
  • Sparse Experimental Design for SA
  • Temporal Significance of Modeling Parameters
  • SA Across Scales
  • MSM of Mucosal Immune Responses
  • The Scales of ENISI Platform
  • Challenges and Opportunities
  • OO Design
  • Performance Matching
  • HPC-Driven MSM of Mucosal Immune Responses
  • Future of MSM
  • Case Study
  • Modeling Mucosal Immunity in the Gut
  • Multiscale Model for IBD
  • The Intracellular Scale
  • The Intercellular Scale
  • The Cellular Scale
  • Model Settings
  • Simulation
  • MSM of Mucosal Immune Responses
  • Concluding Remarks
  • Acknowledgment
  • References
  • 9 Modeling Exercises
  • Modeling Tools
  • Models
  • Computational Model of Immune Responses to Clostridium difficile Infection
  • Computational Model of the 3-Node T Helper Type 17 Model
  • Computational Model of the 9-Node Th1/Th17/Treg Model
  • Model Complexity and Model-Driven Hypothesis Generation
  • Concluding Remarks
  • Acknowledgment
  • References
  • Back Cover.