|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn926101289 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
151023t20152016enk ob 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d YDXCP
|d OPELS
|d N$T
|d EBLCP
|d OCLCF
|d CDX
|d IDB
|d OCLCQ
|d MERUC
|d KIJ
|d U3W
|d D6H
|d OCLCQ
|d CUY
|d ZCU
|d ICG
|d DKC
|d AU@
|d OCLCQ
|d LQU
|d OCLCQ
|d UUM
|d SFB
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 929530068
|a 1105183125
|a 1105574256
|a 1151740260
|
020 |
|
|
|a 9780128037157
|q (electronic bk.)
|
020 |
|
|
|a 0128037156
|q (electronic bk.)
|
020 |
|
|
|z 9780128036976
|
029 |
1 |
|
|a DEBBG
|b BV043216594
|
029 |
1 |
|
|a DEBBG
|b BV043625951
|
035 |
|
|
|a (OCoLC)926101289
|z (OCoLC)929530068
|z (OCoLC)1105183125
|z (OCoLC)1105574256
|z (OCoLC)1151740260
|
050 |
|
4 |
|a QR182.2.I46
|
072 |
|
7 |
|a SCI
|x 056000
|2 bisacsh
|
082 |
0 |
4 |
|a 571.9/60285
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Computational immunology :
|b models and tools /
|c Josep Bassaganya-Riera.
|
264 |
|
1 |
|a London, UK :
|b Academic Press is an imprint of Elsevier,
|c [2015]
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed November 4, 2015).
|
504 |
|
|
|a Includes bibliographical references at the end of each chapters.
|
505 |
0 |
|
|a Front Cover -- Computational Immunology: Models and Tools -- Copyright Page -- Contents -- List of Contributors -- 1 Introduction to Computational Immunology -- Overview -- Modeling Tools and Techniques -- Use Cases Illustrating the Application of Computational Immunology Technologies -- Acknowledgments -- References -- 2 Computational Modeling -- Overview on Computational Modeling -- Translational Research Iterative Modeling Cycle -- Information and Knowledge Extraction from the Literature -- Collect New Data and Data from Public Repositories -- Model Development -- In Silico Experimentation -- Validation of Computational Hypotheses and New Knowledge -- Considerations on Computational Modeling Technologies -- Computational Modeling Tools for Immunology and Infectious Disease Research -- Concluding Remarks -- Acknowledgments -- References -- 3 Use of Computational Modeling in Immunological Research -- Introduction -- Computational and Mathematical Modeling of the Immune Response to Helicobacter pylori -- Inflammatory Bowel Disease -- ODE Model of CD4+ T-Cell Differentiation -- T Follicular Helper Cell Differentiation -- Concluding Remarks -- Acknowledgments -- References -- 4 Immunoinformatics Cyberinfrastructure for Modeling and Analytics -- Introduction -- Web Portal -- LabKey-Based Laboratory Information Management System -- Public Repositories: ImmPort -- Global Gene Expression Analysis -- High-Performance Computing Environment -- HPC Infrastructure for ENISI MSM Modeling -- CyberInfrastructure for NETwork Science -- Pathosystems Resource Integration Center -- Clinical Data Integration -- Concluding Remarks -- Acknowledgments -- Appendix: MIEP Data Uploaded to ImmPort -- References -- 5 Ordinary Differential Equations (ODEs) Based Modeling -- Introduction -- Modeling Network of Gene Regulation -- Modeling Signaling Pathways.
|
505 |
8 |
|
|a Modeling Biochemical Reaction Networks -- Modeling Multiple Scales -- ODE-Based Modeling Pipeline -- Model Development -- Model Calibration -- Deterministic Simulations -- Sensitivity Analysis -- Model-Driven Hypothesis Generation -- Case Studies: CD4+ T-Cell Differentiation Model -- Concluding Remarks -- Acknowledgments -- References -- 6 Agent-Based Modeling and High Performance Computing -- Introduction and Basic Definitions -- Related Work -- Technical Implementation of ENISI -- Formal Representation of ENISI -- Interaction-Based Approach for Modeling Gut Mucosa: Coevolving Graphical Discrete Dynamical Systems (CGDDS) -- Modeling Immune System using CGDDS -- Agent-Based Modeling Using ENISI -- ENISI HPC Implementation -- ABM of H. pylori -- Calibration and Validation of the Preliminary Model -- Sensitivity Analysis for ABM -- Influence of Parameters -- Ranking of Parameters -- Quantifying Uncertainty -- Scaling the Sensitivity Analysis Calculations -- Scalability and Performance -- Modeling Study Investigating Immune Responses to H. pylori -- Use Case: Predictive Computational Modeling of the Mucosal Immune Responses During H. pylori Infection -- Concluding Remarks -- Acknowledgment -- References -- 7 From Big Data Analytics and Network Inference to Systems Modeling -- Introduction -- Big Bata Drives Big Models -- Experimental Planning and Power Analysis -- RNA-Seq Analysis Pipeline -- Read Summarization -- Differential Expression Analysis -- Time Series Data -- Unsupervised High-Resolution Clustering -- Supervised Multistage Clustering to Cluster Genes Based on Pattern of Expression -- Tools, Techniques, and Pipelines -- RNA-Seq Analysis in the Cloud -- RNA Rocket at the PAThosystems Resource Integration Center -- Network Inference and Analytics -- Supervised Machine Learning Methods -- NetGenerator.
|
505 |
8 |
|
|a Adaptive Robust Integrative Analysis for Finding Novel Association -- Case Study: Reconstructing the Th17 Differentiation Network -- Concluding Remarks -- Acknowledgments -- References -- 8 Multiscale Modeling: Concepts, Technologies, and Use Cases in Immunology -- Introduction -- MSM Concepts and Techniques -- Modeling Technologies and Tools -- From Single Scale to MSM -- Sensitivity Analysis -- Global versus Local SA -- Sparse Experimental Design for SA -- Temporal Significance of Modeling Parameters -- SA Across Scales -- MSM of Mucosal Immune Responses -- The Scales of ENISI Platform -- Challenges and Opportunities -- OO Design -- Performance Matching -- HPC-Driven MSM of Mucosal Immune Responses -- Future of MSM -- Case Study -- Modeling Mucosal Immunity in the Gut -- Multiscale Model for IBD -- The Intracellular Scale -- The Intercellular Scale -- The Cellular Scale -- Model Settings -- Simulation -- MSM of Mucosal Immune Responses -- Concluding Remarks -- Acknowledgment -- References -- 9 Modeling Exercises -- Modeling Tools -- Models -- Computational Model of Immune Responses to Clostridium difficile Infection -- Computational Model of the 3-Node T Helper Type 17 Model -- Computational Model of the 9-Node Th1/Th17/Treg Model -- Model Complexity and Model-Driven Hypothesis Generation -- Concluding Remarks -- Acknowledgment -- References -- Back Cover.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Immunoinformatics.
|
650 |
|
6 |
|a Immuno-informatique.
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Anatomy & Physiology.
|2 bisacsh
|
650 |
|
7 |
|a Immunoinformatics
|2 fast
|
700 |
1 |
|
|a Bassaganya-Riera, Josep,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a Bassaganya-Riera, Josep.
|t Computational Immunology: Models and Tools.
|d : Elsevier Science, ©2015
|z 9780128036976
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4042677
|z Texto completo
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 32444825
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4042677
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1083633
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis32444825
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12659688
|
994 |
|
|
|a 92
|b IZTAP
|