Analyzable Functions and Applications.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2005.
|
Colección: | Contemporary Mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- A singularly perturbed Riccati equation
- On global aspects of exact WKB analysis of operators admitting infinitely many phases
- Asymptotic differential algebra
- Introduction
- 1. Hardy Fields
- 2. The Field of Logarithmic-Exponential Series
- 3. H-Fields and Asymptotic Couples
- 4. Algebraic Differential Equations over H-Fields
- References
- Formally well-posed Cauchy problems for linear partial differential equations with constant coefficients
- Non-oscillating integral curves and O-minimal structures
- 1. Introduction
- 2. Definitions and examples2.1 Hardy fields and o-minimal structures
- 2.2 Boshernitzan's example
- 2.3 Quasianalytic Denjoy-Carleman classes
- 3. Euler's equation
- 3.1 Euler's equation in the real plane
- 3.2 Euler's equation in the complex plane
- 3.3 Formal conjugation
- Asymptotics and singularities for a class of difference equations
- Topological construction of transseries and introduction to generalized Borel summability
- 1. Introduction
- 1.1. Abstract multiseries
- 1.2. Topology on multiseries
- 1.3. Contractive operators
- 1.4. Inductive construction of logarithm-free transseries1.5. The space T of general transseries
- 2. Equations in T: examples
- 2.1. Multidimensional systems: transseries solutions at irregular singularities of rank one
- 3. Borel summation techniques
- 3.1. Borel summation of transseries: a first order example
- 3.2. Generalized Borel summation for rank one ODEs
- 3.3. Difference equations and PDEs
- 3.4. More general irregular singularities and multisummability
- References
- Addendum to the hyperasymptotics for multidimensional Laplace integrals
- Higher-order terms for the de Moivre-Laplace theoremTwisted resurgence monomials and canonical-spherical synthesis of local objects
- 1. Introduction: Object Analysis and Object Synthesis
- 1.1 The notion of Local Analytic Object
- 1.2 Object Analysis: the Bridge Equation
- 1.3 Object Synthesis: semi-formal candidates
- 1.4 Object Synthesis: from semi-formal to effective
- 2. Reminders about moulds, resurgent functions, alien derivations
- 2.1 Moulds/comoulds
- 2.2 Resurgent functions
- 2.3 Alien derivations or automorphisms. Their weights
- 2.4 Resurgence monomials3. Object Analysis: six basic examples
- 3.1 Example 1: shift-like diffeomorphism
- 3.2 Example 2: Euler-like differential equation
- 3.3 Example 3: monocritical linear differential system
- 3.4 Example 4: monocritical non-linear differential system
- 3.5 Example 5: polycritical linear differential system
- 3.6 Example 6: polycritical non-linear differential system
- 4. The reverse problem: Object Synthesis
- 4.1 Standard or hyperlogarithmic resurgence monomials and monics
- 4.2 Semi-formal synthesis in Example 1