Cargando…

Mathematical Aspects of Classical Field Theory.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gotay, Mark
Otros Autores: Marsden, Jerrold E., Moncrief, Vincent E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 1992.
Colección:Contemporary Mathematics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents
  • Preface
  • Hidden symmetries in field theory
  • Construction of locally-symmetric Lagrangian field theories from variational identities
  • Introduction to the variational bicomplex
  • Wess-Zumino terms, extended algebras, and anomalies in classical physics
  • Scattering and complete integrability in four dimensions
  • A candidate maximal torus in infinite dimensions
  • Censorship, null geodesics, and strong visibility
  • Quasilocal energy in general relativity
  • The reduction of Einstein's vacuum equations on spacetimes with spacelike U(1)-isometry groups
  • Finiteness theorems in Riemannian geometry and lattice quantum gravityBihamiltonian manifolds and T-function
  • On uniqueness in the large of solutions of Einstein's equations (Strong cosmic censorship)
  • Reduction of degenerate non-autonomous Lagrangians
  • On exactness of the variational bicomplex
  • Geometric quantization and localization of relativistic spin systems
  • Riemannian maps between Riemannian manifolds
  • Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula
  • On the use of auxiliary fields in classical mechanics and in field theory
  • Progress on strong cosmic censorshipLoop algebras and canonical quantum gravity
  • Prequantum BRST cohomology
  • Jacobian quasi-bialgebras and quasi-Poisson Lie groups
  • Deformations and quantum statistical mechanics
  • Canonical and BRST-quantization of constrained systems
  • Classical observables of Gauge theories from the multitemporal approach
  • Variational problems on graded manifolds
  • The regularity of variational problems
  • Homological (ghost) approach to constrained Hamiltonian systems
  • A deformation theory of self-dual Einstein spaces