Laminations and Foliations in Dynamics, Geometry, and Topology.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
2001.
|
Colección: | Contemporary Mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Introduction
- Geodesic laminations on surfaces
- Part I. The dynamical viewpoint
- Definitions and first properties
- Examples of geodesic laminations
- The topology of geodesic laminations
- The higher dimensional case
- A more explicit example
- Local properties of geodesic laminations
- Transverse structures
- Part II. The topological viewpoint
- The topology and piecewise linear structure of ML(S)
- Change of metric
- The length function
- Tangent vectors to ML(S)
- The derivative of the length function
- ""Part III. The geometric viewpoint""""The convex core of a hyperbolic 3â€?manifold""; ""Pleated surfaces in hyperbolic 3â€?manifolds""; ""Variations of the geometry of convex cores""; ""Rotation angles, bending cocycles and Thurston's intersection form""; ""References""; ""Index""; ""Dicritical singularities of holomorphic vector fields""; ""Dynamics of P2 (Examples)""; ""1. Introduction""; ""2. Attractors""; ""2.1 Trapping region""; ""2.2 The map Î?""; ""2.3 Non-Algebraicity of A""; ""2.4 Subhyperbolicity of attractors""
- ""3. When the compact set of points with bounded orbit is disjoint from the critical set""""3.1 J = P2""; ""3.2 Support of Î?""; ""4. Isolated repelling points""; ""4.1 Isolated repelling orbits""; ""4.2 The compact set K of points with bounded orbit""; ""5. Examples of endomorphisms such that Supp Î? = Julia set""; ""3 lectures on foliations and laminations on 3-manifolds""; ""Rational laminations of complex polynomials""; ""Actions of discrete groups on complex projective spaces""; ""Dynamics of singular holomorphic foliations on the complex projective plane""; ""Preface""; ""Introduction""
- 1. Singular Holomorphic Foliations by Curves2. The Monodromy Group of a Leaf
- 3. Density and Ergodicity Theorems
- 4. Non-Trivial Minimal Sets
- References