Orbital and Celestial Mechanics.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Reston :
American Institute of Aeronautics and Astronautics,
2000.
|
Colección: | Progress in astronautics and aeronautics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- ""Cover""; ""Title""; ""Copyright""; ""Foreword""; ""Table of Contents""; ""Preface""; ""Introduction""; ""Chapter 1 Newton's Laws""; ""I. Newton's Laws of Motion""; ""II. Newton's Law of Gravitation""; ""III. The Gravitational Potential""; ""IV. Gravitational Flux and Gauss' Theorem""; ""V. Gravitational Properties of a True Sphere""; ""Chapter 2 The Two-Body Problem""; ""I. Reduction to the One-Center Problem""; ""II. The One-Center Problem""; ""III. The Laplace Vector""; ""IV. The Conic Section Solutions""; ""V. Elliptic Orbits""; ""VI. Spherical Trigonometry""; ""VII. Orbit in Space""
- ""VIII. Orbit Determination from Initial Values""""Chapter 3 Lagrangian Dynamics""; ""I. Variations""; ""II. D'Alembert's Principle""; ""III. Hamilton's Principle""; ""IV. Lagrange's Equations""; ""Reference""; ""Chapter 4 The Hamiltonian Equations""; ""I. An Important Theorem""; ""II. Ignorable Variables""; ""Chapter 5 Canonical Transformations""; ""I. The Condition of Exact Differentials""; ""II. Canonical Generating Functions""; ""III. Extended Point Transformation""; ""IV. Transformation from Plane Rectangular to Plane Polar Coordinates""; ""V. The Jacobi Integral""; ""References""
- ""Chapter 6 Hamilton-Jacobi Theory""""I. The Hamiltonâ€?Jacobi Equation""; ""II. An Important Special Case""; ""III. The Hamiltonâ€?Jacobi Equation for the Kepler Problem""; ""IV. The Integrals for the Kepler Problem""; ""V. Relations Connecting β[sub(2)] and β[sub(3)] with Ï? and Ω""; ""VI. Summary""; ""Bibliography""; ""Chapter 7 Hamiltonâ€?Jacobi Perturbation Theory""; ""Bibliography""; ""Chapter 8 The Vinti Spheroidal Method for Satellite Orbits and Ballistic Trajectories""; ""I. Introduction""; ""II. The Coordinates and the Hamiltonian""; ""III. The Hamiltonâ€?Jacobi Equation""
- ""IV. Laplace's Equation""""V. Expansion of Potential in Spherical Harmonics""; ""VI. Return to the HJ Equation""; ""VII. The Kinematic Equations""; ""VIII. Orbital Elements""; ""IX. Factoring the Quartics""; ""X. The Ï? Integrals""; ""XI. The η Integrals""; ""XII. The Mean Frequencies""; ""XIII. Assembly of the Kinematic Equations""; ""XIV. Solution of the Kinematic Equations""; ""XV. The Periodic Terms""; ""XVI. The Right Ascension Î?""; ""XVII. Further Developments""; ""References""; ""Chapter 9 Delaunay Variables""; ""Reference""; ""Chapter 10 The Lagrange Planetary Equations""
- ""I. Semi-Major Axis""""II. Eccentricity""; ""III. Inclination""; ""IV. Mean Anomaly""; ""V. The Argument of Pericenter""; ""VI. The Longitude of the Node""; ""VII. Summary""; ""Reference""; ""Chapter 11 The Planetary Disturbing Function""; ""Bibliography""; ""Chapter 12 Gaussian Variational Equations for the Jacobi Elements""; ""References""; ""Chapter 13 Gaussian Variational Equations for the Keplerian Elements""; ""I. Preliminaries""; ""II. Equations for Î"[sub(1)] and a""; ""III. Equations for Î"[sub(2)] and e""; ""IV. Equations for Î"[sub(3)] and I""; ""V. Equations for β[sub(3)] = Ω""