Cargando…

The Physics of Thin Film Optical Spectra : an Introduction /

The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stenzel, O. (Olaf) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Alemán
Publicado: Cham, Switzerland : Springer, [2016]
Edición:Second edition.
Colección:Springer series in surface sciences ; 44.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Foreword; Preface to the Second Edition; Preface to the First Edition; Contents; Symbols and Abbreviations; 1 Introduction; Abstract; 1.1 General Remarks; 1.2 To the Content of the Book; 1.3 The General Problem; 1.4 One Remark Concerning Conventions; Part I Classical Description of the Interactionof Light with Matter; 2 The Linear Dielectric Susceptibility; Abstract; 2.1 Maxwell's Equations; 2.2 The Linear Dielectric Susceptibility; 2.3 Linear Optical Constants; 2.4 Some General Remarks; 2.5 Example: Orientation Polarization and Debye's Equations; 2.6 Energy Dissipation.
  • 3 The Classical Treatment of Free and Bound Charge CarriersAbstract; 3.1 Free Charge Carriers; 3.1.1 Derivation of Drude's Formula I; 3.1.2 Derivation of Drude's Formula II; 3.2 The Oscillator Model for Bound Charge Carriers; 3.2.1 General Idea; 3.2.2 Microscopic Fields; 3.2.3 The Clausius-Mossotti and Lorentz-Lorenz-Equations; 3.3 Probing Matter in Different Spectral Regions; 3.4 Spatial Dispersion; 3.5 Attempt of an Illustrative Approach; 4 Derivations from the Oscillator Model; Abstract; 4.1 Natural Linewidth; 4.2 Homogeneous and Inhomogeneous Line Broadening Mechanisms; 4.2.1 General.
  • 4.2.2 Collision Broadening4.2.3 Doppler Broadening; 4.2.4 Brendel Model; 4.3 Oscillators with More Than One Degree of Freedom; 4.4 Sellmeier's and Cauchy's Formulae; 4.5 Optical Properties of Mixtures; 4.5.1 Motivation and Example; 4.5.2 The Maxwell Garnett, Bruggeman and Lorentz-Lorenz Mixing Models; 4.5.3 Metal-Dielectric Mixtures and Remarks on Surface Plasmons; 4.5.4 Dielectric Mixtures and Wiener Bounds; 4.5.5 The Effect of Pores; 4.5.6 The Refractive Index of Amorphous Silicon in Terms of the Lorentz-Lorenz Approach: A Model Calculation; 5 The Kramers-Kronig Relations; Abstract.
  • 5.1 Derivation of the Kramers-Kronig Relations5.2 Some Conclusions; 5.3 Resume from Chaps. 2
  • 4 and this Chapter; 5.3.1 Overview on Main Results; 5.3.2 Problems; Part II Interface Reflection and InterferencePhenomena in Thin Film Systems; 6 Planar Interfaces; Abstract; 6.1 Transmission, Reflection, Absorption and Scattering; 6.1.1 Definitions; 6.1.2 Experimental Aspects; 6.1.3 Remarks on the Absorbance Concept; 6.2 The Effect of Planar Interfaces: Fresnel's Formulae; 6.3 Total Reflection of Light; 6.3.1 Conditions of Total Reflection; 6.3.2 Discussion; 6.3.3 Attenuated Total Reflection ATR.
  • 6.4 Metal Surfaces6.4.1 Metallic Reflection; 6.4.2 Propagating Surface Plasmon Polaritons; 6.5 Anisotropic Materials; 6.5.1 Interface Reflection Between an Isotropic and an Anisotropic Material; 6.5.2 Giant Birefringent Optics; 7 Thick Slabs and Thin Films; Abstract; 7.1 Transmittance and Reflectance of a Thick Slab; 7.2 Thick Slabs and Thin Films; 7.3 Spectra of Thin Films; 7.4 Special Cases; 7.4.1 Vanishing Damping; 7.4.2 Halfwave Layers; 7.4.3 Quarterwave Layers; 7.4.4 Free-Standing Films; 7.4.5 A Single Thin Film on a Thick Substrate; 7.4.6 A Few More Words on Reverse Search Procedures.