Cargando…

Symmetry breaking for representations of rank one orthogonal groups /

The authors give a complete classification of intertwining operators (symmetry breaking operators) between spherical principal series representations of G=O(n+1,1) and G'=O(n,1). They construct three meromorphic families of the symmetry breaking operators, and find their distribution kernels an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kobayashi, Toshiyuki, 1962- (Autor), Speh, Birgit, 1949- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society ; no. 1126.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Chapter 1. Introduction Chapter 2. Symmetry breaking for the spherical principal series representations Chapter 3. Symmetry breaking operators Chapter 4. More about principal series representations Chapter 5. Double coset decomposition $P' \backslash G/P$ Chapter 6. Differential equations satisfied by the distribution kernels of symmetry breaking operators Chapter 7. $K$-finite vectors and regular symmetry breaking operators $\protect \widetilde {\mathbb {A}} _{\lambda, \nu }$ Chapter 8. Meromorphic continuation of regular symmetry breaking operators ${K}_{{\lambda }, {\nu }}̂{\mathbb {A}}$ Chapter 9. Singular symmetry breaking operator $\protect \widetilde {\mathbb {B}}_{\lambda, \nu }$ Chapter 10. Differential symmetry breaking operators Chapter 11. Classification of symmetry breaking operators Chapter 12. Residue formulae and functional identities Chapter 13. Image of symmetry breaking operators Chapter 14. Application to analysis on anti-de Sitter space Chapter 15. Application to branching laws of complementary series Chapter 16. Appendix