Cargando…

Faithfully quadratic rings /

In this monograph we extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. We accomplish this by: (1) Extending the classical noti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dickmann, M. A., 1940- (Autor), Miraglia, Francisco (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society ; no. 1128.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn920024541
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 150824t20152015riua ob 001 0 eng d
040 |a UAB  |b eng  |e rda  |e pn  |c UAB  |d OCLCO  |d UIU  |d GZM  |d OCLCF  |d YDX  |d EBLCP  |d OCLCA  |d DEHBZ  |d AU@  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 958353687  |a 1086459747  |a 1262672961 
020 |a 9781470426293  |q (online) 
020 |a 1470426293  |q (online) 
020 |a 1470414686 
020 |a 9781470414689 
020 |z 9781470414689  |q (print) 
020 |z 1470414686  |q (print) 
024 3 |a 9781470414689 
029 1 |a AU@  |b 000069669846 
035 |a (OCoLC)920024541  |z (OCoLC)958353687  |z (OCoLC)1086459747  |z (OCoLC)1262672961 
050 4 |a QA243  |b .D476 2015 
082 0 4 |a 512/.48  |2 23 
084 |a 11E81  |a 11E70  |a 12D15  |a 03C65  |a 06E99  |a 46E25  |a 54C40  |2 msc 
049 |a UAMI 
100 1 |a Dickmann, M. A.,  |d 1940-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjxHqMdFqTYkbM9dYK6fWP 
245 1 0 |a Faithfully quadratic rings /  |c M. Dickmann, F. Miraglia. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (xi, 129 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 238, number 1128 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 121-123) and indexes. 
500 |a "Volume 238, number 1129 (sixth of 6 numbers), November 2015." 
520 |a In this monograph we extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. We accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A². (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in the field case. Under these axioms we prove that the ring-theoretic approach based on T-isometry coincides with the formal approach formulated in terms of reduced special groups. This guarantees, for rings verifying these axioms, the validity of a number of important structural properties, notably the Arason-Pfister Hauptsatz, Milnor's mod 2 Witt ring conjecture, Marshall's signature conjecture, uniform upper bounds for the Pfister index of quadratic forms, a local-global Sylvester inertia law, etc. We call (T)-faithfully quadratic rings verifying these axioms. A significant part of the monograph is devoted to prove quadratic faithfulness of certain outstanding (classes of) rings; among them, rings with many units satisfying a mild additional requirement, reduced f-rings (herein rings of continuous real-valued functions), and strictly representable rings. Obviously, T-quadratic faithfulness depends on both the ring and the preorder T. We isolate a property of preorders defined solely in terms of the real spectrum of a given ring -- that we baptise unit-reflecting preorders -- which, for an extensive class of preordered rings, (A, T), turns out to be equivalent to the T-quadratic faithfulness of A. We show, e.g., that all preorders on the ring of continuous real-valued functions on a compact Hausdorff are unit-reflecting; we also give examples where this property fails. 
505 0 |a Preface -- Basic concepts -- Rings and special groups -- The notion of T-faithfully quadratic ring. Some basic consequences -- Idempotents, products and T-isometry -- First-order axioms for quadratic faithfulness -- Rings with many units -- Transversality of representation in p-rings with bounded inversion -- Reduced f-rings -- Strictly representable rings -- Quadratic form theory over faithfully quadratic rings -- Bibliography -- Index of symbols -- Subject index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Forms, Quadratic. 
650 0 |a Commutative rings. 
650 6 |a Formes quadratiques. 
650 6 |a Anneaux commutatifs. 
650 7 |a Commutative rings  |2 fast 
650 7 |a Forms, Quadratic  |2 fast 
650 7 |a Quadratische Form  |2 gnd 
650 7 |a Kommutativer Ring  |2 gnd 
700 1 |a Miraglia, Francisco,  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Faithfully quadratic rings (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGXYpYYWDdmrCM6f4jC4v3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Dickmann, M.A., 1940-  |t Faithfully quadratic rings.  |d Providence, Rhode Island : American Mathematical Society, 2015  |z 9781470414689  |w (DLC) 2015027245  |w (OCoLC)915159430 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1128. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832043  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444967 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4832043 
938 |a YBP Library Services  |b YANK  |n 13155147 
994 |a 92  |b IZTAP