Cargando…

Liver regeneration : basic mechanisms, relevant models and clinical applications /

Liver Regeneration: Basic Mechanisms, Relevant Models and Clinical Applications presents cutting-edge information on liver regeneration research through an integrated, systems-wide perspective. The book addresses discoveries on hepatic progenitor cells, liver regeneration after chemical damage, and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Apte, Udayan M. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Elsevier : Academic Press, [2015]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Liver Regeneration: Basic Mechanisms, Relevant Models and Clinical Applications
  • Copyright
  • Dedication
  • Contents
  • Contributors
  • Preface
  • Part I: Introduction
  • Chapter 1: Liver Regeneration: An Introduction
  • 1.1. History
  • 1.2. Models of Liver Regeneration
  • 1.3. Mechanisms of Liver Regeneration
  • 1.4. Regeneration Using Progenitor Cells
  • 1.5. Mitogen-Induced Hepatocyte Proliferation
  • 1.6. Frontiers
  • References
  • Part II: Methods to Assess Liver Regeneration
  • Chapter 2: Models to Study Liver Regeneration
  • 2.1. Introduction
  • 2.2. Main Models
  • 2.2.1. Partial Hepatectomy
  • 2.2.1.1. PH Procedure
  • 2.2.1.2. Establishing Baseline, Time Course, and Proper Controls
  • 2.2.2. Models of Liver Regeneration After Chemical-Induced Liver Injury
  • 2.2.2.1. d-Galactosamine: Mechanism of Hepatotoxicity
  • 2.2.2.1.1. d-Galactosamine: Hepatic Regenerative Response
  • 2.2.2.2. Carbon Tetrachloride: Mechanism of Hepatotoxicity
  • 2.2.2.2.1. CCl4: Hepatic Regenerative Response
  • 2.2.2.3. Thioacetamide
  • 2.2.2.4. Acetaminophen
  • 2.2.2.5. Regeneration After Ischemia/Reflow
  • 2.2.2.5.1. Mechanisms of I/R Injury and Repair
  • 2.3. Alternate Models of Liver Growth
  • 2.3.1. Postnatal Liver Growth
  • 2.3.2. Pregnancy-Induced Liver Growth
  • 2.4. Models to Study HPCs
  • 2.4.1. 2-Acetylaminofluorene Combined with Partial Hepatectomy
  • 2.4.2. The DDC Diet Model
  • 2.4.3. The CDE Diet Model
  • 2.5. Assays Used to Assess Liver Regeneration
  • 2.5.1. PCNA Immunolocalization
  • 2.5.2. 3H-TdR and BrdU Incorporation
  • 2.5.3. Ki67 Immunolocalization
  • 2.6. Additional Methods
  • References
  • Chapter 3: Liver Regeneration in Zebrafish
  • 3.1. Introduction
  • 3.2. The Therapeutic Impact of Zebrafish Research
  • 3.3. Adult Liver Anatomy and Physiology
  • 3.4. Liver Regeneration Following Partial Hepatectomy.
  • 3.5. Drug-Induced Hepatotoxicity
  • 3.6. Genetic Hepatocyte Ablation
  • 3.7. Summary
  • References
  • Part III: Molecular Mechanisms of Liver Regeneration
  • Chapter 4: The Priming and Progression Theory of Liver Regeneration
  • 4.1. Overview of Studies of Liver Regeneration
  • 4.2. Salient Features of Liver Regeneration Prior to 1970
  • 4.3. Identifying Hepatomitogens in the 1970s-1980s
  • 4.4. 1990s: Development of the Priming and Progression Model, with a Focus on Inflammatory Stimuli During Regeneration
  • 4.5. Priming Alone Versus Priming and Progression: 1/3 Versus 2/3 Hepatectomy
  • 4.6. Controversies Regarding the Importance of Priming in Regeneration
  • 4.7. Recent Insight into Cell-Cycle C̀̀ompetency ́́
  • 4.8. The Role of NPCs in Priming and Progression
  • 4.9. Future Directions
  • References
  • Chapter 5: Extracellular Signals Involved in Liver Regeneration: Direct and Auxiliary Mitogens
  • 5.1. Hepatocyte Growth Assay
  • 5.2. Complete Versus Auxiliary Mitogens
  • 5.3. Complete or Direct Mitogens
  • 5.3.1. Hepatocyte Growth Factor
  • 5.3.2. Ligands of EGFR
  • 5.4. Auxiliary Mitogens
  • 5.5. TNFÜ
  • 5.6. IL6
  • 5.7. Norepinephrine
  • 5.8. Insulin
  • 5.9. Summary
  • References
  • Chapter 6: Developmental Pathways in Liver Regeneration-I
  • 6.1. Introduction
  • 6.2. Wnt/Ý-Catenin Signaling
  • 6.2.1. Wnt/Ý-Catenin Signaling in Liver Growth
  • 6.2.2. Ý-Catenin Signaling During Liver Regeneration After Partial Hepatectomy
  • 6.2.2.1. Ý-Catenin Activation and Downstream Signaling After Partial Hepatectomy
  • 6.2.2.2. Ý-Catenin Signaling in Toxicant-Induced Liver Injury and Regeneration
  • 6.2.3. Enhanced Ý-Catenin Activation Stimulates Regeneration of Liver
  • 6.2.4. Exogenous Ý-Catenin Activation and Liver Regeneration
  • 6.2.5. Cell-Molecule Circuitry of Wnt Signaling in Liver Regeneration After Hepatectomy
  • 6.3. Notch Signaling.
  • 6.3.1. Notch Signaling in Hepatic Pathophysiology
  • 6.3.2. Notch Signaling in Liver Regeneration After PH
  • 6.4. Hippo Signaling
  • 6.4.1. Hippo Signaling in Hepatic Pathophysiology
  • 6.4.2. Hippo Signaling in Liver Regeneration After PH
  • 6.5. NF-mB Signaling
  • 6.5.1. Signaling Upstream of NF-mB
  • 6.5.2. Signaling Downstream of NF-mB
  • 6.5.3. Role of NF-mB Signaling in Liver Pathophysiology
  • 6.5.4. Role of NF-mB Signaling in Liver Regeneration
  • 6.6. Conclusions
  • References
  • Chapter 7: Mechanisms of Termination of Liver Regeneration
  • 7.1. Introduction
  • 7.2. Transforming Growth Factor Ý
  • 7.3. Extracellular Matrix and Integrin-Linked Kinase
  • 7.4. Glypican-3
  • 7.5. Activin
  • 7.6. C/EBPÜ
  • 7.7. Cyclin E1 and E2
  • 7.8. Nuclear Receptors
  • 7.9. Hippo/Yap Signaling Pathway
  • 7.10. MicroRNAs 34a and 23b
  • 7.11. Conclusions
  • References
  • Chapter 8: Role of CXC Chemokines in Liver Repair and Regeneration
  • 8.1. Introduction
  • 8.2. Clinical Scenarios and Their Analogous Injury Models
  • 8.3. General Principles of Liver Regeneration
  • 8.4. Chemokines and Their Receptors
  • 8.5. Roles for CXC Chemokines in Liver Regeneration
  • 8.5.1. ELR+ Chemokines
  • 8.5.2. ELR- Chemokines
  • 8.6. CXC Chemokines and Hepatocyte Exosomes
  • 8.7. Conclusion
  • References
  • Chapter 9: Bile Acid Receptors and Liver Regeneration
  • 9.1. Introduction
  • 9.2. Metabolic Signals and Liver Regeneration
  • 9.3. BA Signaling and Liver Regeneration
  • 9.4. FXR and Liver Regeneration
  • 9.5. Intestine-FXR and Liver Regeneration
  • 9.6. TGR5 and Liver Regeneration
  • 9.7. FXR and HCC Development
  • 9.8. Conclusions and Perspective
  • References
  • Chapter 10: Role of Developmental Morphogens in Liver Regeneration
  • 10.1. Introduction
  • 10.2. Overview of the Hedgehog Pathway
  • 10.2.1. Understanding Hedgehog Ligands Physiology.
  • 10.2.2. Hedgehog Pathway in Target Cells
  • 10.2.3. The Role of Primary Cilium
  • 10.2.4. Regulation of the Pathway and Noncanonical Pathway
  • 10.3. Hedgehog Pathway After Partial Hepatectomy-Feeding Prometheus' Liver
  • 10.4. Regenerating the Sick Liver
  • 10.5. Conclusion
  • References
  • Chapter 11: Regulation of Cell Cycle During Liver Regeneration
  • 11.1. Introduction
  • 11.2. Rb and E2F1
  • 11.3. Cyclin D-Cdk4/Cdk6
  • 11.4. Cyclin E-Cdk2
  • 11.5. Cyclin A
  • 11.6. Cyclin B
  • 11.7. Cdk1
  • 11.8. Cell-Cycle Inhibitors
  • 11.9. Concluding Remarks
  • References
  • Chapter 12: Changes in Hepatocyte Ploidy During Liver Regeneration
  • 12.1. Introduction
  • 12.2. Polyploidy in the Liver
  • 12.2.1. Mechanisms for Hepatic Polyploidization
  • 12.2.2. Function of Polyploid Hepatocytes
  • 12.3. Genetic Diversity in the Liver
  • 12.3.1. Ploidy Reversal and Aneuploidy in the Liver
  • 12.3.2. Hepatic Cell Divisions with Multipolar Spindles
  • 12.3.3. Control of Liver Diversity and the Link to Cancer
  • 12.4. An Integrated Model for Polyploidy, Ploidy Reversal, and Aneuploidy in the Liver
  • 12.4.1. The Ploidy Conveyor
  • 12.4.2. The Ploidy Conveyor as a Mechanism for Liver Adaptation
  • 12.5. Conclusion
  • References
  • Chapter 13: Computational Modeling as an Approach to Study the Cellular and Molecular Regulatory Networks Driving Liver Re ...
  • 13.1. Introduction
  • 13.2. Extended Computational Model of Liver Regeneration Including Cell Growth
  • 13.3. Modes of Regeneration Identified by Sampling Computational Model Parameter Space
  • 13.4. Dynamic Regulation of the Regenerating Liver Revealed Using Sensitivity Analyses
  • 13.5. Model Limitations, Future Directions, and Experimental Insights
  • 13.6. Conclusions
  • References
  • Chapter 14: Mitogen-Induced Cell Proliferation and Cancer Promotion in the Liver
  • 14.1. Introduction.
  • 14.2. Cancer Promotion
  • 14.3. Cytokine-Activating Mitogens
  • 14.4. Drug-Induced Hyperplasia
  • 14.5. PPAR-Induced Proliferation
  • 14.6. CAR-Induced Proliferation
  • 14.7. THR-Induced Proliferation
  • 14.8. Minor Proliferative Responses Induced by Nuclear Receptors
  • 14.9. Human Proliferative Responses
  • 14.10. Conclusions
  • References
  • Chapter 15: Metabolic Regulation of Liver Regeneration
  • 15.1. Introduction
  • 15.2. The Metabolic Response to Hepatic Insufficiency
  • 15.3. Evidence for the Metabolic Regulation of Liver Regeneration
  • 15.3.1. PH-Induced Liver Regeneration Occurs in Proportion to Associated Alterations in Metabolism
  • 15.3.2. Glucose Supplementation Impairs Experimental Liver Regeneration
  • 15.3.3. Disrupting Regenerative Hepatic Steatosis Compromises Liver Regeneration
  • 15.3.4. Amino Acid Metabolism is Specifically Altered During Experimental Liver Regeneration
  • 15.3.5. Regenerative Regulation of Metabolism
  • 15.4. Candidate Mechanisms Linking Metabolism to Regeneration
  • 15.4.1. Nuclear Hormone Receptor-Dependent Hepatocellular Proliferation
  • 15.4.2. Metabolic Influences on Epigenetic Regulation of Liver Regeneration
  • 15.4.3. Other Considerations and Areas for Future Basic Research
  • 15.5. Clinical Implications
  • 15.5.1. Nonalcoholic Fatty Liver Disease
  • 15.5.2. Aging
  • 15.5.3. Subtotal Hepatectomy
  • 15.5.4. Hepatic Regenerative Metabolomic Biomarkers
  • 15.6. Summary and Conclusions
  • References
  • Chapter 16: Liver Regeneration: The Biliary Perspective
  • 16.1. Introduction
  • 16.1.1. Biliary Function
  • 16.1.2. Anatomy and Heterogeneity of the Biliary Tree
  • 16.2. Characteristics of Biliary Regeneration
  • 16.2.1. Type I or T̀̀ypical ́́Cholangiocyte Proliferation
  • 16.2.2. Type II or À̀typical ́́Cholangiocyte Proliferation
  • 16.2.3. Type III or Oval Cell Proliferation.