Level one algebraic cusp forms of classical groups of small rank /
The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2015.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1121. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Introduction Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups Chapter 3. Automorphic representations of classical groups : review of Arthur's results Chapter 4. Determination of $\Pi _{\rm alg}^\bot ({\rm PGL}_n)$ for $n\leq 5$ Chapter 5. Description of $\Pi _{\rm disc}({\rm SO}_7)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_6)$ Chapter 6. Description of $\Pi _{\rm disc}({\rm SO}_9)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_8)$ Chapter 7. Description of $\Pi _{\rm disc}({\rm SO}_8)$ and $\Pi _{\rm alg}^{\rm o}({\rm PGL}_8)$ Chapter 8. Description of $\Pi _{\rm disc}({\rm G}_2)$ Chapter 9. Application to Siegel modular forms Appendix A. Adams-Johnson packets Appendix B. The Langlands group of $\mathbb {Z}$ and Sato-Tate groups Appendix C. Tables Appendix D. The $121$ level $1$ automorphic representations of ${\rm SO}_{25}$ with trivial coefficients.