Cargando…

Level one algebraic cusp forms of classical groups of small rank /

The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chenevier, Gaëtan (Autor), Renard, David, 1968- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society ; no. 1121.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn917876223
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 150423t20152015riua ob 000 0 eng d
040 |a COO  |b eng  |e rda  |e pn  |c COO  |d OCLCO  |d UIU  |d OCLCF  |d COD  |d GZM  |d LLB  |d YDX  |d EBLCP  |d OCLCA  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 920024575  |a 958353626 
020 |a 9781470425098  |q (online) 
020 |a 1470425092  |q (online) 
020 |z 9781470410940  |q (alk. paper) 
020 |z 147041094X  |q (alk. paper) 
029 1 |a AU@  |b 000069669851 
035 |a (OCoLC)917876223  |z (OCoLC)920024575  |z (OCoLC)958353626 
050 4 |a QA243  |b .C54 2015 
082 0 4 |a 512.7/4  |2 23 
049 |a UAMI 
100 1 |a Chenevier, Gaëtan,  |e author. 
245 1 0 |a Level one algebraic cusp forms of classical groups of small rank /  |c Gaëtan Chenevier, David Renard. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (v, 122 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 237, number 1121 
588 0 |a Online resource; title from PDF title page (viewed October 6, 2015). 
504 |a Includes bibliographical references (pages 117-122). 
500 |a "Volume 237, number 1121 (fifth of 6 numbers), September 2015." 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups  |t Chapter 3. Automorphic representations of classical groups : review of Arthur's results  |t Chapter 4. Determination of $\Pi _{\rm alg}^\bot ({\rm PGL}_n)$ for $n\leq 5$  |t Chapter 5. Description of $\Pi _{\rm disc}({\rm SO}_7)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_6)$  |t Chapter 6. Description of $\Pi _{\rm disc}({\rm SO}_9)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_8)$  |t Chapter 7. Description of $\Pi _{\rm disc}({\rm SO}_8)$ and $\Pi _{\rm alg}^{\rm o}({\rm PGL}_8)$  |t Chapter 8. Description of $\Pi _{\rm disc}({\rm G}_2)$  |t Chapter 9. Application to Siegel modular forms  |t Appendix A. Adams-Johnson packets  |t Appendix B. The Langlands group of $\mathbb {Z}$ and Sato-Tate groups  |t Appendix C. Tables  |t Appendix D. The $121$ level $1$ automorphic representations of ${\rm SO}_{25}$ with trivial coefficients. 
520 |a The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level o. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Forms (Mathematics) 
650 0 |a Cusp forms (Mathematics) 
650 6 |a Formes (Mathématiques) 
650 6 |a Formes paraboliques (Mathématiques) 
650 7 |a Cusp forms (Mathematics)  |2 fast 
650 7 |a Forms (Mathematics)  |2 fast 
700 1 |a Renard, David,  |d 1968-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjB63DQkMpqrgqXjgw8Bfq 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Level one algebraic cusp forms of classical groups of small rank (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvQvqkRm6TmH6yxgX4pfq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Chenevier, Gaëtan.  |t Level one algebraic cusp forms of classical groups of small rank.  |d Providence, Rhode Island : American Mathematical Society, 2015  |z 9781470410940  |z 147041094X  |w (DLC) 2015016272  |w (OCoLC)908311194 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1121. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832028  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444954 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4832028 
938 |a YBP Library Services  |b YANK  |n 13155134 
994 |a 92  |b IZTAP