|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn917876223 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
150423t20152015riua ob 000 0 eng d |
040 |
|
|
|a COO
|b eng
|e rda
|e pn
|c COO
|d OCLCO
|d UIU
|d OCLCF
|d COD
|d GZM
|d LLB
|d YDX
|d EBLCP
|d OCLCA
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 920024575
|a 958353626
|
020 |
|
|
|a 9781470425098
|q (online)
|
020 |
|
|
|a 1470425092
|q (online)
|
020 |
|
|
|z 9781470410940
|q (alk. paper)
|
020 |
|
|
|z 147041094X
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000069669851
|
035 |
|
|
|a (OCoLC)917876223
|z (OCoLC)920024575
|z (OCoLC)958353626
|
050 |
|
4 |
|a QA243
|b .C54 2015
|
082 |
0 |
4 |
|a 512.7/4
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chenevier, Gaëtan,
|e author.
|
245 |
1 |
0 |
|a Level one algebraic cusp forms of classical groups of small rank /
|c Gaëtan Chenevier, David Renard.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2015.
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (v, 122 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 237, number 1121
|
588 |
0 |
|
|a Online resource; title from PDF title page (viewed October 6, 2015).
|
504 |
|
|
|a Includes bibliographical references (pages 117-122).
|
500 |
|
|
|a "Volume 237, number 1121 (fifth of 6 numbers), September 2015."
|
505 |
0 |
0 |
|t Chapter 1. Introduction
|t Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups
|t Chapter 3. Automorphic representations of classical groups : review of Arthur's results
|t Chapter 4. Determination of $\Pi _{\rm alg}^\bot ({\rm PGL}_n)$ for $n\leq 5$
|t Chapter 5. Description of $\Pi _{\rm disc}({\rm SO}_7)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_6)$
|t Chapter 6. Description of $\Pi _{\rm disc}({\rm SO}_9)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_8)$
|t Chapter 7. Description of $\Pi _{\rm disc}({\rm SO}_8)$ and $\Pi _{\rm alg}^{\rm o}({\rm PGL}_8)$
|t Chapter 8. Description of $\Pi _{\rm disc}({\rm G}_2)$
|t Chapter 9. Application to Siegel modular forms
|t Appendix A. Adams-Johnson packets
|t Appendix B. The Langlands group of $\mathbb {Z}$ and Sato-Tate groups
|t Appendix C. Tables
|t Appendix D. The $121$ level $1$ automorphic representations of ${\rm SO}_{25}$ with trivial coefficients.
|
520 |
|
|
|a The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level o.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Forms (Mathematics)
|
650 |
|
0 |
|a Cusp forms (Mathematics)
|
650 |
|
6 |
|a Formes (Mathématiques)
|
650 |
|
6 |
|a Formes paraboliques (Mathématiques)
|
650 |
|
7 |
|a Cusp forms (Mathematics)
|2 fast
|
650 |
|
7 |
|a Forms (Mathematics)
|2 fast
|
700 |
1 |
|
|a Renard, David,
|d 1968-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjB63DQkMpqrgqXjgw8Bfq
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Level one algebraic cusp forms of classical groups of small rank (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFvQvqkRm6TmH6yxgX4pfq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chenevier, Gaëtan.
|t Level one algebraic cusp forms of classical groups of small rank.
|d Providence, Rhode Island : American Mathematical Society, 2015
|z 9781470410940
|z 147041094X
|w (DLC) 2015016272
|w (OCoLC)908311194
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1121.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832028
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444954
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4832028
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13155134
|
994 |
|
|
|a 92
|b IZTAP
|