Level one algebraic cusp forms of classical groups of small rank /
The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2015.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1121. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level o. |
---|---|
Notas: | "Volume 237, number 1121 (fifth of 6 numbers), September 2015." |
Descripción Física: | 1 online resource (v, 122 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 117-122). |
ISBN: | 9781470425098 1470425092 |
ISSN: | 0065-9266 ; |