|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn917875640 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
150424t20152015riu ob 000 0 eng d |
040 |
|
|
|a COO
|b eng
|e rda
|e pn
|c COO
|d OCLCO
|d UIU
|d OCLCF
|d GZM
|d YDX
|d EBLCP
|d OCLCA
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 958353362
|
020 |
|
|
|a 9781470425074
|q (online)
|
020 |
|
|
|a 1470425076
|q (online)
|
020 |
|
|
|z 9781470414238
|q (alk. paper)
|
020 |
|
|
|z 1470414236
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000069669852
|
029 |
1 |
|
|a CHNEW
|b 000950023
|
029 |
1 |
|
|a CHVBK
|b 483161977
|
035 |
|
|
|a (OCoLC)917875640
|z (OCoLC)958353362
|
050 |
|
4 |
|a QA274.2
|b .D35 2015
|
082 |
0 |
4 |
|a 519.2/3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dalang, Robert C.,
|d 1961-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJycHrVg7jw8MQW98dwHmd
|
245 |
1 |
0 |
|a Hitting probabilities for nonlinear systems of stochastic waves /
|c Robert C. Dalang, Marta Sanz-Solé.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2015.
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (v, 75 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 237, number 1120
|
588 |
0 |
|
|a Online resource; title from PDF title page (viewed October 6, 2015).
|
504 |
|
|
|a Includes bibliographical references (pages 73-75).
|
500 |
|
|
|a "Volume 237, number 1120 (fourth of 6 numbers), September 2015."
|
505 |
0 |
|
|a Introduction -- Upper bounds on hitting probabilities -- Conditions on Malliavin matrix eigenvalues for lower bounds -- Study of Malliavin matrix eigenvalues and lower bounds -- Technical estimates -- Bibliography.
|
520 |
|
|
|a The authors consider a d-dimensional random field u = \{u(t, x)\} that solves a non-linear system of stochastic wave equations in spatial dimensions k \in \{1,2,3\}, driven by a spatially homogeneous Gaussian noise that is white in time. They mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent \beta. Using Malliavin calculus, they establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of \mathbb{R}^d, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that ap.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Stochastic processes.
|
650 |
|
0 |
|a Stochastic differential equations.
|
650 |
|
0 |
|a Hausdorff measures.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
6 |
|a Processus stochastiques.
|
650 |
|
6 |
|a Équations différentielles stochastiques.
|
650 |
|
6 |
|a Mesures de Hausdorff.
|
650 |
|
6 |
|a Probabilités.
|
650 |
|
7 |
|a probability.
|2 aat
|
650 |
|
7 |
|a Hausdorff measures
|2 fast
|
650 |
|
7 |
|a Probabilities
|2 fast
|
650 |
|
7 |
|a Stochastic differential equations
|2 fast
|
650 |
|
7 |
|a Stochastic processes
|2 fast
|
700 |
1 |
|
|a Sanz Solé, Marta,
|d 1952-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJf8x9kHXC6qBKMmhYHt8C
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Hitting probabilities for nonlinear systems of stochastic waves (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFqK4cmK6ykYFJxRmWwvjK
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Dalang, Robert C., 1961-
|t Hitting probabilities for nonlinear systems of stochastic waves.
|d Providence, Rhode Island : American Mathematical Society, 2015
|z 9781470414238
|z 1470414236
|w (DLC) 2015016271
|w (OCoLC)908311193
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1120.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832027
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444953
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4832027
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13155133
|
994 |
|
|
|a 92
|b IZTAP
|