Cargando…

Brandt matrices and theta series over global function fields /

The aim of this article is to give a complete account of the Eichler-Brandt theory over function fields and the basis problem for Drinfeld type automorphic forms. Given arbitrary function field k together with a fixed place [infinity symbol], we construct a family of theta series from the norm forms...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chuang, Chih-Yun, 1984- (Autor), Lee, Ting-Fang, 1981- (Autor), Wei, Fu-Tsun, 1981- (Autor), Yu, Jing, 1949- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society ; no. 1117.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:The aim of this article is to give a complete account of the Eichler-Brandt theory over function fields and the basis problem for Drinfeld type automorphic forms. Given arbitrary function field k together with a fixed place [infinity symbol], we construct a family of theta series from the norm forms of "definite" quaternion algebras, and establish an explicit Hecke-module homomorphism from the Picard group of an associated definite Shimura curve to a space of Drinfeld type automorphic forms. The "compatibility" of these homomorphisms with different square-free levels is also examined. These Hecke-equivariant maps lead to a nice description of the subspace generated by our theta series, and thereby contributes to the so-called basis problem. Restricting the norm forms to pure quaternions, we obtain another family of theta series which are automorphic functions on the metaplectic group, and results in a Shintani-type correspondence between Drinfeld type forms and metaplectic forms
Notas:"Volume 237, number 1117 (first of 6 numbers), September 2015."
Descripción Física:1 online resource (v, 64 pages)
Bibliografía:Includes bibliographical references (page 61).
ISBN:9781470425012
1470425017
ISSN:0065-9266 ;