Cargando…

Training students to extract value from big data : summary of a workshop /

As the availability of high-throughput data-collection technologies, such as information-sensing mobile devices, remote sensing, internet log records, and wireless sensor networks has grown, science, engineering, and business have rapidly transitioned from striving to develop information from scant...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mellody, Maureen (rapporteur.)
Autor Corporativo: Training Students to Extract Value from Big Data (Workshop)
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Washington, D.C. : The National Academies Press, [2015]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn915729200
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 150702s2015 dcua obt 100 0 eng
040 |a NLM  |b eng  |e rda  |e pn  |c NLM  |d VT2  |d YDXCP  |d OCLCQ  |d EBLCP  |d IDB  |d OCLCQ  |d OCLCO  |d MERUC  |d OCLCA  |d OCLCQ  |d NLM  |d OCLCO  |d OCLCA  |d OCLCF  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d YDX  |d OCL  |d OCLCO  |d OCLCL 
016 7 |a 101664726  |2 DNLM 
020 |z 9780309314374 
020 |z 0309314372 
029 0 |a NLM  |b 101664726 
029 1 |a AU@  |b 000069467746 
035 |a (OCoLC)915729200 
037 |b 00017961 
042 |a pcc 
043 |a n-us--- 
050 4 |a QA13  |b M455 2014eb 
060 0 0 |a WA 950 
082 0 4 |a 510 
049 |a UAMI 
100 1 |a Mellody, Maureen,  |e rapporteur. 
245 1 0 |a Training students to extract value from big data :  |b summary of a workshop /  |c Maureen Mellody, rapporteur ; Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and their Applications, Division on Engineering and Physical Sciences, National Research Council of the National Academies. 
246 3 |a Big data 
264 1 |a Washington, D.C. :  |b The National Academies Press,  |c [2015] 
300 |a 1 online resource (1 PDF file (xii, 54 pages)) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from PDF title page. 
504 |a Includes bibliographical references. 
520 3 |a As the availability of high-throughput data-collection technologies, such as information-sensing mobile devices, remote sensing, internet log records, and wireless sensor networks has grown, science, engineering, and business have rapidly transitioned from striving to develop information from scant data to a situation in which the challenge is now that the amount of information exceeds a human's ability to examine, let alone absorb, it. Data sets are increasingly complex, and this potentially increases the problems associated with such concerns as missing information and other quality concerns, data heterogeneity, and differing data formats. The nation's ability to make use of data depends heavily on the availability of a workforce that is properly trained and ready to tackle high-need areas. Training students to be capable in exploiting big data requires experience with statistical analysis, machine learning, and computational infrastructure that permits the real problems associated with massive data to be revealed and, ultimately, addressed. Analysis of big data requires cross-disciplinary skills, including the ability to make modeling decisions while balancing trade-offs between optimization and approximation, all while being attentive to useful metrics and system robustness. To develop those skills in students, it is important to identify whom to teach, that is, the educational background, experience, and characteristics of a prospective data-science student; what to teach, that is, the technical and practical content that should be taught to the student; and how to teach, that is, the structure and organization of a data-science program. Training Students to Extract Value from Big Data summarizes a workshop convened in April 2014 by the National Research Council's Committee on Applied and Theoretical Statistics to explore how best to train students to use big data. The workshop explored the need for training and curricula and coursework that should be included. One impetus for the workshop was the current fragmented view of what is meant by analysis of big data, data analytics, or data science. New graduate programs are introduced regularly, and they have their own notions of what is meant by those terms and, most important, of what students need to know to be proficient in data-intensive work. This report provides a variety of perspectives about those elements and about their integration into courses and curricula. 
536 |a This study was supported by Grant DMS-1332693 between the National Academy of Sciences and the National Science Foundation. Any opinions, findings, or conclusions expressed in this publication are those of the author and do not necessarily reflect the views of the organizations or agencies that provided support for the project. 
588 0 |a Version viewed August 14, 2015. 
505 0 |a FrontMatter; Acknowledgment of Reviewers; Contents; 1 Introduction; 2 The Need for Training: Experiences and Case Studies; 3 Principles for Working with Big Data; 4 Courses, Curricula, and Interdisciplinary Programs; 5 Shared Resources; 6 Workshop Lessons; References; Appendixes; Appendix A: Registered Workshop Participants; Appendix B: Workshop Agenda; Appendix C: Acronyms. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics  |x Study and teaching (Higher)  |z United States  |x Evaluation. 
650 0 |a Data sets. 
650 0 |a Statistics. 
650 0 |a Statistics  |x Methodology. 
650 1 2 |a Data Collection 
650 2 2 |a Data Mining  |x methods 
650 2 2 |a Datasets as Topic 
650 2 2 |a Statistics as Topic 
650 6 |a Statistique  |x Méthodologie. 
650 6 |a Jeux de données. 
650 6 |a Statistiques. 
650 6 |a Statistique. 
650 7 |a statistics.  |2 aat 
650 7 |a Statistics  |2 fast 
650 7 |a Data sets  |2 fast 
650 7 |a Mathematics  |x Study and teaching (Higher)  |x Evaluation  |2 fast 
651 7 |a United States  |2 fast  |1 https://id.oclc.org/worldcat/entity/E39PBJtxgQXMWqmjMjjwXRHgrq 
655 2 |a Congress 
655 7 |a proceedings (reports)  |2 aat 
655 7 |a Conference papers and proceedings  |2 fast 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congrès.  |2 rvmgf 
710 2 |a National Research Council (U.S.).  |b Committee on Applied and Theoretical Statistics,  |e issuing body. 
711 2 |a Training Students to Extract Value from Big Data (Workshop)  |d (2014 :  |c Washington, D.C.) 
758 |i has work:  |a Training students to extract value from big data (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFCgFM6XcGJWqVhRKRQYvb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3379411  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 18895522 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3379411 
938 |a YBP Library Services  |b YANK  |n 12283268 
994 |a 92  |b IZTAP