Energy storage for sustainable microgrid /
Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefit...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Academic Press is an imprint of Elsevier,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Energy Storage for Sustainable Microgrid; Copyright Page; Contents; Foreword; 1 Basic Concepts and Control Architecture of Microgrids; 1.1 Introduction; 1.1.1 Concepts of Microgrids; 1.1.2 Benefits of Microgrids; 1.1.3 Integration of Microgrid to Distribution Networks; 1.1.4 Basic Components and Operation Strategies in Microgrids; 1.1.5 Microgrid Market Models; 1.2 Microgrid Control Issues; 1.2.1 Introduction; 1.2.2 Centralized Control Versus Decentralized Control; 1.2.3 Forecasting; 1.2.4 State Estimation; 1.2.4.1 Least Squares Estimation.
- 1.2.4.2 Weighted Least Squares Estimation1.2.4.3 Newton-Raphson Algorithm; 1.3 Microgrid Control Methods; 1.3.1 PQ Control; 1.3.2 V/f Control; 1.3.3 Droop Control; 1.3.3.1 Active Power Control; 1.3.3.2 Voltage Control; 1.4 Control Architectures in Microgrids; 1.4.1 Master-Slave Control; 1.4.2 Peer-to-peer Control; 1.4.3 Hierarchy Control; 1.5 Microgrid Protection; 1.6 Three-Phase Circuit for Grid-Connected DG; 1.6.1 LC Filter; 1.6.2 Isolation Transformer; 1.7 Energy Storage Technology in Renewable Microgrids; 1.7.1 Batteries; 1.7.1.1 Lead-Acid Batteries; 1.7.1.2 Lithium-Ion Batteries.
- 1.7.1.3 Redox-Flow Battery1.7.1.4 Sodium Battery; 1.7.2 Flywheels; 1.7.3 Supercapacitor; 1.7.4 Comparison of Various ESS Technologies; 1.7.5 Battery Energy Storage Modeling Consideration; References; 2 Applications of ESS in Renewable Energy Microgrids; 2.1 Introduction; 2.2 Aggregated ESS; 2.3 Distributed ESS; 2.3.1 Generator Side Distributed ESS; 2.3.2 Load Side Distributed ESS; 2.4 Energy Management (Load Leveling and Peak Shifting); 2.4.1 Load Leveling; 2.4.2 Peak Shifting; 2.5 Fluctuation Suppression (Intermittency Mitigation); 2.5.1 Constant Power Control; 2.5.2 Output Filtering.
- 2.5.3 Ramp-rate Control2.6 Uninterruptible Power System (UPS); 2.7 Low-Voltage Ride Through; 2.8 Placement of the ESS to Improve Power Quality; 2.9 Voltage Regulation Using ESS; 2.9.1 The Threshold Value for ESS Voltage Regulation Activation; 2.9.2 Upper Limit of ESS Reactive Power Output; 2.9.3 Reactive Power Support by ESS; 2.9.4 Automatic Substitution of ESS Reactive Power Regulation Capacity; 2.9.5 The Reactive Power Control Strategy Verification Case; 2.10 ESS as Spinning Reserve; 2.11 Case Study: Operating Reserves Using ESS; 2.11.1 Problem Formulation; 2.11.2 Simulation Setup.
- 2.11.3 Simulation Results and DiscussionsReferences; 3 Interfacing Between an ESS and a Microgrid; 3.1 Introduction; 3.2 DC-DC Converter; 3.2.1 Buck Converter (Step-Down Converter); 3.2.2 Boost Converter (Step-Up Converter); 3.2.3 Bidirectional Buck-Boost Converter; 3.3 AC-DC and DC-AC Converter; 3.3.1 Single-Phase AC-DC Rectifier; 3.3.1.1 Single-Phase Half-Wave Rectifier; 3.3.1.2 Single-Phase Full-Wave Rectifier; 3.3.2 Three-Phase AC-DC Rectifier; 3.3.2.1 Three-Phase Half-Wave Rectifier; 3.3.2.2 Three-Phase Full-Wave Rectifier; 3.3.3 Single-Phase DC-AC Inverter.