|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
EBOOKCENTRAL_ocn913797618 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
150711s2015 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d MERUC
|d CUY
|d OCLCO
|d ICG
|d ZCU
|d OCLCF
|d OCLCQ
|d OCLCO
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d SNU
|d VLY
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1162450852
|
020 |
|
|
|a 9781119136446
|
020 |
|
|
|a 111913644X
|
020 |
|
|
|a 1848218052
|
020 |
|
|
|a 9781848218055
|
035 |
|
|
|a (OCoLC)913797618
|z (OCoLC)1162450852
|
050 |
|
4 |
|a QA76.9.A43
|
082 |
0 |
4 |
|a 006.3/1
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Clerc, Maurice.
|
245 |
1 |
0 |
|a Guided Randomness in Optimization, Volume 1.
|
260 |
|
|
|a Hoboken :
|b Wiley,
|c 2015.
|
300 |
|
|
|a 1 online resource (320 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title Page; Copyright; Contents; Preface; About this book; Organization of the book; Tools; Key points; Contact the author; Introduction; PART 1: Randomness in Optimization; 1: Necessary Risk; 1.1. No better than random search; 1.1.1. Uniform random search; 1.1.2. Sequential search; 1.1.3. Partial gradient; 1.2. Better or worse than random search; 1.2.1. Positive correlation problems; 1.2.2. Negative correlation problems; 2: Random Number Generators (RNGs); 2.1. Generator types; 2.2. True randomness; 2.3. Simulated randomness; 2.3.1. KISS; 2.3.2. Mersenne-Twister.
|
505 |
8 |
|
|a 2.4. Simplified randomness2.4.1. Linear congruential generators; 2.4.2. Additive; 2.4.3. Multiplicative; 2.5. Guided randomness; 2.5.1. Gaussian; 2.5.2. Bell; 2.5.3. Cauchy; 2.5.4. Lévy; 2.5.5. Log-normal; 2.5.6. Composite distributions; 3: The Effects of Randomness; 3.1. Initialization; 3.1.1. Uniform randomness; 3.1.2. Low divergence; 3.1.3. No Man's Land techniques; 3.2. Movement; 3.3. Distribution of the Next Possible Positions (DNPP); 3.4. Confinement, constraints and repairs; 3.4.1. Strict confinement; 3.4.2. Random confinement; 3.4.3. Moderate confinement; 3.4.4. Reverse.
|
505 |
8 |
|
|a 3.4.5. Reflection-diffusion3.5. Strategy selection; PART 2: Optimizer Comparison; Introduction to Part 2; 4: Algorithms and Optimizers; 4.1. The Minimaliste algorithm; 4.1.1. General description; 4.1.2. Minimaliste in practice; 4.1.3. Use of randomness; 4.2. PSO; 4.2.1. Description; 4.2.2. Use of randomness; 4.3. APS; 4.3.1. Description; 4.3.2. Uses of randomness; 4.4. Applications of randomness; 5: Performance Criteria; 5.1. Eff-Res: construction and properties; 5.1.1. Simple example using random search; 5.2. Criteria and measurements; 5.2.1. Objective criteria; 5.2.1.1. Result probabilities.
|
505 |
8 |
|
|a 5.2.1.2. Effort probabilities5.2.1.3. Mean result of an effort; 5.2.1.4. Median result of an effort; 5.2.1.5. Normalized efficiency; 5.2.1.6. Mean and median cost; 5.2.2. Semi-subjective criteria; 5.2.2.1. Fragmentation of effort; 5.2.2.2. Result quality and success rate; 5.2.2.3. Global quality; 5.3. Practical construction of an Eff-Res; 5.3.1. Detailed example: (Minimaliste, Alpine 2D); 5.3.2. Qualitative interpretations; 5.4. Conclusion; 6: Comparing Optimizers; 6.1. Data collection and preprocessing; 6.2. Critical analysis of comparisons.
|
505 |
8 |
|
|a 6.2.1. Influence of criteria and the number of attempts6.2.2. Influence of effort levels; 6.2.3. Global comparison; 6.2.4. Influence of the RNG; 6.3. Uncertainty in statistical analysis; 6.3.1. Independence of tests; 6.3.2. Confidence threshold; 6.3.3. Success rate; 6.4. Remarks on test sets; 6.4.1. Analysis grid; 6.4.2. Representativity; 6.5. Precision and prudence; PART 3: Appendices; 7: Mathematical Notions; 7.1. Sets closed under permutations; 7.2. Drawing with or without repetition; 7.3. Properties of the Additive and Multiplicative generators; 7.3.1. Additive; 7.3.2. Multiplicative.
|
520 |
|
|
|a The performance of an algorithm used depends on the GNA. This book focuses on the comparison of optimizers, it defines a stress-outcome approach which can be derived all the classic criteria (median, average, etc.) and other more sophisticated. Source-codes used for the examples are also presented, this allows a reflection on the ""superfluous chance, "" succinctly explaining why and how the stochastic aspect of optimization could be avoided in some cases
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
6 |
|a Optimisation mathématique.
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|
758 |
|
|
|i has work:
|a Guided Randomness in Optimization, Volume 1 (Text)
|1 https://id.oclc.org/worldcat/entity/E39PD3H3fjYcJTmk83cwQQwMrm
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Clerc, Maurice.
|t Guided Randomness in Optimization, Volume 1.
|d Hoboken : Wiley, ©2015
|z 9781848218055
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1998802
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1998802
|
994 |
|
|
|a 92
|b IZTAP
|