|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn913651248 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
150303t20152014riua ob 001 0 eng d |
040 |
|
|
|a COO
|b eng
|e rda
|e pn
|c COO
|d OCLCO
|d OCLCF
|d GZM
|d YDX
|d EBLCP
|d OCLCA
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d UAB
|d LOA
|d OCLCO
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 910950917
|a 958353206
|a 1086490692
|a 1262683423
|
020 |
|
|
|a 9781470422776
|q (online)
|
020 |
|
|
|a 1470422778
|q (online)
|
020 |
|
|
|z 9781470416928
|q (alk. paper)
|
020 |
|
|
|z 1470416921
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000069669856
|
035 |
|
|
|a (OCoLC)913651248
|z (OCoLC)910950917
|z (OCoLC)958353206
|z (OCoLC)1086490692
|z (OCoLC)1262683423
|
050 |
|
4 |
|a QA174.2
|b .S27 2015
|
082 |
0 |
4 |
|a 511.3/22
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Sargsyan, Grigor,
|d 1980-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjGgpw9cyrpBmtWxYDYbQy
|
245 |
1 |
0 |
|a Hod mice and the mouse set conjecture /
|c Grigor Sargsyan.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2015.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (vii, 172 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 236, number 1111
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 236, number 1111 (first of 6 numbers), July 2015."
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Introduction -- Hod mice -- Comparison theory of hod mice -- Hod mice revisited -- Analysis of HOD -- Hod pair constructions -- A proof of the mouse set conjecture -- Descriptive set theory primer -- Bibliography -- Index.
|
520 |
|
|
|a The author develops the theory of Hod mice below AD_{\mathbb{R}}+ "\Theta is regular". He uses this theory to show that HOD of the minimal model of AD_{\mathbb{R}}+ "\Theta is regular" satisfies GCH. Moreover, he shows that the Mouse Set Conjecture is true in the minimal model of AD_{\mathbb{R}}+ "\Theta is regular."
|
546 |
|
|
|a Text in English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Set theory.
|
650 |
|
0 |
|a Combinatorial analysis.
|
650 |
|
6 |
|a Théorie des ensembles.
|
650 |
|
6 |
|a Analyse combinatoire.
|
650 |
|
7 |
|a Combinatorial analysis
|2 fast
|
650 |
|
7 |
|a Set theory
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Hod mice and the mouse set conjecture (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFQ9Qr3PTGtTTWKbhX6VG3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Sargsyan, Grigor, 1980-
|t Hod mice and the mouse set conjecture.
|d Providence, Rhode Island : American Mathematical Society, 2015
|z 9781470416928
|w (DLC) 2015007758
|w (OCoLC)907060276
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1111.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832006
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444935
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4832006
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1347446
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13155117
|
994 |
|
|
|a 92
|b IZTAP
|