Cargando…

Machine learning for protein subcellular localization prediction /

For bioinformaticians, computational biologists, and wet-lab biologists, the authors provide the latest machine learning approaches for protein subcellular localization prediction with a systemic scheme for improving predictors performance.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Wan, Shibiao (Autor), Mak, M. W. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Germany ; Boston, Massachusetts : De Gruyter, 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn912323205
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 150609t20152015gw ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d IDEBK  |d OCLCQ  |d OCLCO  |d FEM  |d K6U  |d OCLCQ  |d LVT  |d UAB  |d CCO  |d PIFFA  |d FVL  |d YDXCP  |d ZCU  |d OCLCO  |d OCLCQ  |d MERUC  |d DEGRU  |d U3W  |d COCUF  |d STF  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d ICG  |d INT  |d AU@  |d OCLCQ  |d WYU  |d OCLCO  |d OCLCA  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d OCLCO  |d UKAHL  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCA  |d SNU  |d VLY  |d UWK  |d SXB  |d OCLCQ  |d TUHNV  |d OCLCO  |d AUD  |d S2H  |d QGK  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO  |d SFB  |d OCLCL 
019 |a 910408036  |a 961517505  |a 962685066  |a 965990740  |a 968100997  |a 1058149739  |a 1162423689  |a 1164924712  |a 1166186288  |a 1170803015  |a 1171442814  |a 1259112675 
020 |a 9781501501500  |q (e-book) 
020 |a 150150150X  |q (e-book) 
020 |a 1501501526 
020 |a 9781501501524 
020 |z 9781501510489 
020 |z 9781501501524  |q (EPUB) 
020 |z 1501510487 
024 7 |a 10.1515/9781501501500  |2 doi 
029 1 |a AU@  |b 000055036072 
029 1 |a AU@  |b 000060612550 
029 1 |a DEBBG  |b BV042992030 
029 1 |a DEBBG  |b BV044050487 
035 |a (OCoLC)912323205  |z (OCoLC)910408036  |z (OCoLC)961517505  |z (OCoLC)962685066  |z (OCoLC)965990740  |z (OCoLC)968100997  |z (OCoLC)1058149739  |z (OCoLC)1162423689  |z (OCoLC)1164924712  |z (OCoLC)1166186288  |z (OCoLC)1170803015  |z (OCoLC)1171442814  |z (OCoLC)1259112675 
037 |a 2326883343542755850  |b TotalBoox  |f Ebook only  |n www.totalboox.com 
050 4 |a QP551  |b .W36 2015eb 
060 4 |a QU 55 
072 7 |a TEC067000  |2 bisacsh 
082 0 4 |a 572/.696  |2 23 
084 |a WC 7700  |2 rvk  |0 (DE-625)rvk/148144 
049 |a UAMI 
100 1 |a Wan, Shibiao,  |e author. 
245 1 0 |a Machine learning for protein subcellular localization prediction /  |c Shibiao Wan, Man-Wai Mak. 
264 1 |a Berlin, Germany ;  |a Boston, Massachusetts :  |b De Gruyter,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (210 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a For bioinformaticians, computational biologists, and wet-lab biologists, the authors provide the latest machine learning approaches for protein subcellular localization prediction with a systemic scheme for improving predictors performance. 
505 0 |a Preface -- Contents -- List of Abbreviations -- 1 Introduction -- 1.1 Proteins and their subcellular locations -- 1.2 Why computationally predict protein subcellular localization? -- 1.2.1 Significance of the subcellular localization of proteins -- 1.2.2 Conventional wet-lab techniques -- 1.2.3 Computational prediction of protein subcellular localization -- 1.3 Organization of this book -- 2 Overview of subcellular localization prediction -- 2.1 Sequence-based methods -- 2.1.1 Composition-based methods -- 2.1.2 Sorting signal-based methods -- 2.1.3 Homology-based methods -- 2.2 Knowledge-based methods -- 2.2.1 GO-term extraction -- 2.2.2 GO-vector construction -- 2.3 Limitations of existing methods -- 2.3.1 Limitations of sequence-based methods -- 2.3.2 Limitations of knowledge-based methods -- 3 Legitimacy of using gene ontology information -- 3.1 Direct table lookup? -- 3.1.1 Table lookup procedure for single-label prediction -- 3.1.2 Table-lookup procedure for multi-label prediction -- 3.1.3 Problems of table lookup -- 3.2 Using only cellular component GO terms? -- 3.3 Equivalent to homologous transfer? -- 3.4 More reasons for using GO information -- 4 Single-location protein subcellular localization -- 4.1 Extracting GO from the Gene Ontology Annotation Database -- 4.1.1 Gene Ontology Annotation Database -- 4.1.2 Retrieval of GO terms -- 4.1.3 Construction of GO vectors -- 4.1.4 Multiclass SVM classification -- 4.2 FusionSVM: Fusion of gene ontology and homology-based features -- 4.2.1 InterProGOSVM: Extracting GO from InterProScan -- 4.2.2 PairProSVM: A homology-based method -- 4.2.3 Fusion of InterProGOSVM and PairProSVM -- 4.3 Summary -- 5 From single- to multi-location -- 5.1 Significance of multi-location proteins -- 5.2 Multi-label classification -- 5.2.1 Algorithm-adaptation methods. 
505 8 |a 5.2.2 Problem transformation methods -- 5.2.3 Multi-label classification in bioinformatics -- 5.3 mGOASVM: A predictor for both single- and multi-location proteins -- 5.3.1 Feature extraction -- 5.3.2 Multi-label multiclass SVM classification -- 5.4 AD-SVM: An adaptive decision multi-label predictor -- 5.4.1 Multi-label SVM scoring -- 5.4.2 Adaptive decision for SVM (AD-SVM) -- 5.4.3 Analysis of AD-SVM -- 5.5 mPLR-Loc: A multi-label predictor based on penalized logistic regression -- 5.5.1 Single-label penalized logistic regression -- 5.5.2 Multi-label penalized logistic regression -- 5.5.3 Adaptive decision for LR (mPLR-Loc) -- 5.6 Summary -- 6 Mining deeper on GO for protein subcellular localization -- 6.1 Related work -- 6.2 SS-Loc: Using semantic similarity over GO -- 6.2.1 Semantic similarity measures -- 6.2.2 SS vector construction -- 6.3 HybridGO-Loc: Hybridizing GO frequency and semantic similarity features -- 6.3.1 Hybridization of two GO features -- 6.3.2 Multi-label multiclass SVM classification -- 6.4 Summary -- 7 Ensemble random projection for large-scale predictions -- 7.1 Random projection -- 7.2 RP-SVM: A multi-label classifier with ensemble random projection -- 7.2.1 Ensemble multi-label classifier -- 7.2.2 Multi-label classification -- 7.3 R3P-Loc: A compact predictor based on ridge regression and ensemble random projection -- 7.3.1 Limitation of using current databases -- 7.3.2 Creating compact databases -- 7.3.3 Single-label ridge regression -- 7.3.4 Multi-label ridge regression -- 7.4 Summary -- 8 Experimental setup -- 8.1 Prediction of single-label proteins -- 8.1.1 Datasets construction -- 8.1.2 Performance metrics -- 8.2 Prediction of multi-label proteins -- 8.2.1 Dataset construction -- 8.2.2 Datasets analysis -- 8.2.3 Performance metrics -- 8.3 Statistical evaluation methods -- 8.4 Summary. 
505 8 |a 9 Results and analysis -- 9.1 Performance of GOASVM -- 9.1.1 Comparing GO vector construction methods -- 9.1.2 Performance of successive-search strategy -- 9.1.3 Comparing with methods based on other features -- 9.1.4 Comparing with state-of-the-art GO methods -- 9.1.5 GOASVM using old GOA databases -- 9.2 Performance of FusionSVM -- 9.2.1 Comparing GO vector construction and normalization methods -- 9.2.2 Performance of PairProSVM -- 9.2.3 Performance of FusionSVM -- 9.2.4 Effect of the fusion weights on the performance of FusionSVM -- 9.3 Performance of mGOASVM -- 9.3.1 Kernel selection and optimization -- 9.3.2 Term-frequency for mGOASVM -- 9.3.3 Multi-label properties for mGOASVM -- 9.3.4 Further analysis of mGOASVM -- 9.3.5 Comparing prediction results of novel proteins -- 9.4 Performance of AD-SVM -- 9.5 Performance of mPLR-Loc -- 9.5.1 Effect of adaptive decisions on mPLR-Loc -- 9.5.2 Effect of regularization on mPLR-Loc -- 9.6 Performance of HybridGO-Loc -- 9.6.1 Comparing different features -- 9.7 Performance of RP-SVM -- 9.7.1 Performance of ensemble random projection -- 9.7.2 Comparison with other dimension-reduction methods -- 9.7.3 Performance of single random-projection -- 9.7.4 Effect of dimensions and ensemble size -- 9.8 Performance of R3P-Loc -- 9.8.1 Performance on the compact databases -- 9.8.2 Effect of dimensions and ensemble size -- 9.8.3 Performance of ensemble random projection -- 9.9 Comprehensive comparison of proposed predictors -- 9.9.1 Comparison of benchmark datasets -- 9.9.2 Comparison of novel datasets -- 9.10 Summary -- 10 Properties of the proposed predictors -- 10.1 Noise data in the GOA Database -- 10.2 Analysis of single-label predictors -- 10.2.1 GOASVM vs FusionSVM -- 10.2.2 Can GOASVM be combined with PairProSVM? -- 10.3 Advantages of mGOASVM -- 10.3.1 GO-vector construction. 
505 8 |a 10.3.2 GO subspace selection -- 10.3.3 Capability of handling multi-label problems -- 10.4 Analysis for HybridGO-Loc -- 10.4.1 Semantic similarity measures -- 10.4.2 GO-frequency features vs SS features -- 10.4.3 Bias analysis -- 10.5 Analysis for RP-SVM -- 10.5.1 Legitimacy of using RP -- 10.5.2 Ensemble random projection for robust performance -- 10.6 Comparing the proposed multi-label predictors -- 10.7 Summary -- 11 Conclusions and future directions -- 11.1 Conclusions -- 11.2 Future directions -- A Webservers for protein subcellular localization -- A.1 GOASVM webserver -- A.2 mGOASVM webserver -- A.3 HybridGO-Loc webserver -- A.4 mPLR-Loc webserver -- B Support vector machines -- B.1 Binary SVM classification -- B.2 One-vs-rest SVM classification -- C Proof of no bias in LOOCV -- D Derivatives for penalized logistic regression -- Bibliography -- Index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Proteins  |x Physiological transport  |x Data processing. 
650 0 |a Machine learning. 
650 0 |a Probabilities  |x Data processing. 
650 0 |a Carrier proteins. 
650 0 |a Artificial intelligence. 
650 0 |a Probabilities. 
650 1 2 |a Carrier Proteins 
650 2 2 |a Artificial Intelligence 
650 2 2 |a Probability 
650 2 |a Machine Learning 
650 6 |a Protéines  |x Transport physiologique  |x Informatique. 
650 6 |a Apprentissage automatique. 
650 6 |a Probabilités  |x Informatique. 
650 6 |a Protéines de liaison. 
650 6 |a Intelligence artificielle. 
650 6 |a Probabilités. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a probability.  |2 aat 
650 7 |a Technology & Engineering  |x Signals & Signal Processing.  |2 bisacsh 
650 7 |a Probabilities  |2 fast 
650 7 |a Carrier proteins  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Probabilities  |x Data processing  |2 fast 
653 |a Bioinformatics. 
653 |a Computer Science. 
653 |a Proteomics. 
700 1 |a Mak, M. W.,  |e author. 
758 |i has work:  |a Machine learning for protein subcellular localization prediction (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFxVBRpqpFFYt8FrHcJ8fm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Wan, Shibiao.  |t Machine learning for protein subcellular localization prediction.  |d Berlin, Germany ; Boston, Massachusetts : De Gruyter, ©2015  |h xvii, 192 pages  |z 9781501510489 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1820373  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27169414 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27169334 
938 |a De Gruyter  |b DEGR  |n 9781501501500 
938 |a ebrary  |b EBRY  |n ebr11059834 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30030179 
938 |a YBP Library Services  |b YANK  |n 12082887 
938 |a YBP Library Services  |b YANK  |n 12082888 
994 |a 92  |b IZTAP