|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn912323205 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
150609t20152015gw ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d IDEBK
|d OCLCQ
|d OCLCO
|d FEM
|d K6U
|d OCLCQ
|d LVT
|d UAB
|d CCO
|d PIFFA
|d FVL
|d YDXCP
|d ZCU
|d OCLCO
|d OCLCQ
|d MERUC
|d DEGRU
|d U3W
|d COCUF
|d STF
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d ICG
|d INT
|d AU@
|d OCLCQ
|d WYU
|d OCLCO
|d OCLCA
|d TKN
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d OCLCO
|d UKAHL
|d HS0
|d OCLCO
|d OCLCQ
|d OCLCA
|d SNU
|d VLY
|d UWK
|d SXB
|d OCLCQ
|d TUHNV
|d OCLCO
|d AUD
|d S2H
|d QGK
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCO
|d SFB
|d OCLCL
|
019 |
|
|
|a 910408036
|a 961517505
|a 962685066
|a 965990740
|a 968100997
|a 1058149739
|a 1162423689
|a 1164924712
|a 1166186288
|a 1170803015
|a 1171442814
|a 1259112675
|
020 |
|
|
|a 9781501501500
|q (e-book)
|
020 |
|
|
|a 150150150X
|q (e-book)
|
020 |
|
|
|a 1501501526
|
020 |
|
|
|a 9781501501524
|
020 |
|
|
|z 9781501510489
|
020 |
|
|
|z 9781501501524
|q (EPUB)
|
020 |
|
|
|z 1501510487
|
024 |
7 |
|
|a 10.1515/9781501501500
|2 doi
|
029 |
1 |
|
|a AU@
|b 000055036072
|
029 |
1 |
|
|a AU@
|b 000060612550
|
029 |
1 |
|
|a DEBBG
|b BV042992030
|
029 |
1 |
|
|a DEBBG
|b BV044050487
|
035 |
|
|
|a (OCoLC)912323205
|z (OCoLC)910408036
|z (OCoLC)961517505
|z (OCoLC)962685066
|z (OCoLC)965990740
|z (OCoLC)968100997
|z (OCoLC)1058149739
|z (OCoLC)1162423689
|z (OCoLC)1164924712
|z (OCoLC)1166186288
|z (OCoLC)1170803015
|z (OCoLC)1171442814
|z (OCoLC)1259112675
|
037 |
|
|
|a 2326883343542755850
|b TotalBoox
|f Ebook only
|n www.totalboox.com
|
050 |
|
4 |
|a QP551
|b .W36 2015eb
|
060 |
|
4 |
|a QU 55
|
072 |
|
7 |
|a TEC067000
|2 bisacsh
|
082 |
0 |
4 |
|a 572/.696
|2 23
|
084 |
|
|
|a WC 7700
|2 rvk
|0 (DE-625)rvk/148144
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Wan, Shibiao,
|e author.
|
245 |
1 |
0 |
|a Machine learning for protein subcellular localization prediction /
|c Shibiao Wan, Man-Wai Mak.
|
264 |
|
1 |
|a Berlin, Germany ;
|a Boston, Massachusetts :
|b De Gruyter,
|c 2015.
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (210 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a For bioinformaticians, computational biologists, and wet-lab biologists, the authors provide the latest machine learning approaches for protein subcellular localization prediction with a systemic scheme for improving predictors performance.
|
505 |
0 |
|
|a Preface -- Contents -- List of Abbreviations -- 1 Introduction -- 1.1 Proteins and their subcellular locations -- 1.2 Why computationally predict protein subcellular localization? -- 1.2.1 Significance of the subcellular localization of proteins -- 1.2.2 Conventional wet-lab techniques -- 1.2.3 Computational prediction of protein subcellular localization -- 1.3 Organization of this book -- 2 Overview of subcellular localization prediction -- 2.1 Sequence-based methods -- 2.1.1 Composition-based methods -- 2.1.2 Sorting signal-based methods -- 2.1.3 Homology-based methods -- 2.2 Knowledge-based methods -- 2.2.1 GO-term extraction -- 2.2.2 GO-vector construction -- 2.3 Limitations of existing methods -- 2.3.1 Limitations of sequence-based methods -- 2.3.2 Limitations of knowledge-based methods -- 3 Legitimacy of using gene ontology information -- 3.1 Direct table lookup? -- 3.1.1 Table lookup procedure for single-label prediction -- 3.1.2 Table-lookup procedure for multi-label prediction -- 3.1.3 Problems of table lookup -- 3.2 Using only cellular component GO terms? -- 3.3 Equivalent to homologous transfer? -- 3.4 More reasons for using GO information -- 4 Single-location protein subcellular localization -- 4.1 Extracting GO from the Gene Ontology Annotation Database -- 4.1.1 Gene Ontology Annotation Database -- 4.1.2 Retrieval of GO terms -- 4.1.3 Construction of GO vectors -- 4.1.4 Multiclass SVM classification -- 4.2 FusionSVM: Fusion of gene ontology and homology-based features -- 4.2.1 InterProGOSVM: Extracting GO from InterProScan -- 4.2.2 PairProSVM: A homology-based method -- 4.2.3 Fusion of InterProGOSVM and PairProSVM -- 4.3 Summary -- 5 From single- to multi-location -- 5.1 Significance of multi-location proteins -- 5.2 Multi-label classification -- 5.2.1 Algorithm-adaptation methods.
|
505 |
8 |
|
|a 5.2.2 Problem transformation methods -- 5.2.3 Multi-label classification in bioinformatics -- 5.3 mGOASVM: A predictor for both single- and multi-location proteins -- 5.3.1 Feature extraction -- 5.3.2 Multi-label multiclass SVM classification -- 5.4 AD-SVM: An adaptive decision multi-label predictor -- 5.4.1 Multi-label SVM scoring -- 5.4.2 Adaptive decision for SVM (AD-SVM) -- 5.4.3 Analysis of AD-SVM -- 5.5 mPLR-Loc: A multi-label predictor based on penalized logistic regression -- 5.5.1 Single-label penalized logistic regression -- 5.5.2 Multi-label penalized logistic regression -- 5.5.3 Adaptive decision for LR (mPLR-Loc) -- 5.6 Summary -- 6 Mining deeper on GO for protein subcellular localization -- 6.1 Related work -- 6.2 SS-Loc: Using semantic similarity over GO -- 6.2.1 Semantic similarity measures -- 6.2.2 SS vector construction -- 6.3 HybridGO-Loc: Hybridizing GO frequency and semantic similarity features -- 6.3.1 Hybridization of two GO features -- 6.3.2 Multi-label multiclass SVM classification -- 6.4 Summary -- 7 Ensemble random projection for large-scale predictions -- 7.1 Random projection -- 7.2 RP-SVM: A multi-label classifier with ensemble random projection -- 7.2.1 Ensemble multi-label classifier -- 7.2.2 Multi-label classification -- 7.3 R3P-Loc: A compact predictor based on ridge regression and ensemble random projection -- 7.3.1 Limitation of using current databases -- 7.3.2 Creating compact databases -- 7.3.3 Single-label ridge regression -- 7.3.4 Multi-label ridge regression -- 7.4 Summary -- 8 Experimental setup -- 8.1 Prediction of single-label proteins -- 8.1.1 Datasets construction -- 8.1.2 Performance metrics -- 8.2 Prediction of multi-label proteins -- 8.2.1 Dataset construction -- 8.2.2 Datasets analysis -- 8.2.3 Performance metrics -- 8.3 Statistical evaluation methods -- 8.4 Summary.
|
505 |
8 |
|
|a 9 Results and analysis -- 9.1 Performance of GOASVM -- 9.1.1 Comparing GO vector construction methods -- 9.1.2 Performance of successive-search strategy -- 9.1.3 Comparing with methods based on other features -- 9.1.4 Comparing with state-of-the-art GO methods -- 9.1.5 GOASVM using old GOA databases -- 9.2 Performance of FusionSVM -- 9.2.1 Comparing GO vector construction and normalization methods -- 9.2.2 Performance of PairProSVM -- 9.2.3 Performance of FusionSVM -- 9.2.4 Effect of the fusion weights on the performance of FusionSVM -- 9.3 Performance of mGOASVM -- 9.3.1 Kernel selection and optimization -- 9.3.2 Term-frequency for mGOASVM -- 9.3.3 Multi-label properties for mGOASVM -- 9.3.4 Further analysis of mGOASVM -- 9.3.5 Comparing prediction results of novel proteins -- 9.4 Performance of AD-SVM -- 9.5 Performance of mPLR-Loc -- 9.5.1 Effect of adaptive decisions on mPLR-Loc -- 9.5.2 Effect of regularization on mPLR-Loc -- 9.6 Performance of HybridGO-Loc -- 9.6.1 Comparing different features -- 9.7 Performance of RP-SVM -- 9.7.1 Performance of ensemble random projection -- 9.7.2 Comparison with other dimension-reduction methods -- 9.7.3 Performance of single random-projection -- 9.7.4 Effect of dimensions and ensemble size -- 9.8 Performance of R3P-Loc -- 9.8.1 Performance on the compact databases -- 9.8.2 Effect of dimensions and ensemble size -- 9.8.3 Performance of ensemble random projection -- 9.9 Comprehensive comparison of proposed predictors -- 9.9.1 Comparison of benchmark datasets -- 9.9.2 Comparison of novel datasets -- 9.10 Summary -- 10 Properties of the proposed predictors -- 10.1 Noise data in the GOA Database -- 10.2 Analysis of single-label predictors -- 10.2.1 GOASVM vs FusionSVM -- 10.2.2 Can GOASVM be combined with PairProSVM? -- 10.3 Advantages of mGOASVM -- 10.3.1 GO-vector construction.
|
505 |
8 |
|
|a 10.3.2 GO subspace selection -- 10.3.3 Capability of handling multi-label problems -- 10.4 Analysis for HybridGO-Loc -- 10.4.1 Semantic similarity measures -- 10.4.2 GO-frequency features vs SS features -- 10.4.3 Bias analysis -- 10.5 Analysis for RP-SVM -- 10.5.1 Legitimacy of using RP -- 10.5.2 Ensemble random projection for robust performance -- 10.6 Comparing the proposed multi-label predictors -- 10.7 Summary -- 11 Conclusions and future directions -- 11.1 Conclusions -- 11.2 Future directions -- A Webservers for protein subcellular localization -- A.1 GOASVM webserver -- A.2 mGOASVM webserver -- A.3 HybridGO-Loc webserver -- A.4 mPLR-Loc webserver -- B Support vector machines -- B.1 Binary SVM classification -- B.2 One-vs-rest SVM classification -- C Proof of no bias in LOOCV -- D Derivatives for penalized logistic regression -- Bibliography -- Index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Proteins
|x Physiological transport
|x Data processing.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Probabilities
|x Data processing.
|
650 |
|
0 |
|a Carrier proteins.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Probabilities.
|
650 |
1 |
2 |
|a Carrier Proteins
|
650 |
2 |
2 |
|a Artificial Intelligence
|
650 |
2 |
2 |
|a Probability
|
650 |
|
2 |
|a Machine Learning
|
650 |
|
6 |
|a Protéines
|x Transport physiologique
|x Informatique.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Probabilités
|x Informatique.
|
650 |
|
6 |
|a Protéines de liaison.
|
650 |
|
6 |
|a Intelligence artificielle.
|
650 |
|
6 |
|a Probabilités.
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|
650 |
|
7 |
|a probability.
|2 aat
|
650 |
|
7 |
|a Technology & Engineering
|x Signals & Signal Processing.
|2 bisacsh
|
650 |
|
7 |
|a Probabilities
|2 fast
|
650 |
|
7 |
|a Carrier proteins
|2 fast
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Probabilities
|x Data processing
|2 fast
|
653 |
|
|
|a Bioinformatics.
|
653 |
|
|
|a Computer Science.
|
653 |
|
|
|a Proteomics.
|
700 |
1 |
|
|a Mak, M. W.,
|e author.
|
758 |
|
|
|i has work:
|a Machine learning for protein subcellular localization prediction (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFxVBRpqpFFYt8FrHcJ8fm
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Wan, Shibiao.
|t Machine learning for protein subcellular localization prediction.
|d Berlin, Germany ; Boston, Massachusetts : De Gruyter, ©2015
|h xvii, 192 pages
|z 9781501510489
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1820373
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH27169414
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH27169334
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9781501501500
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11059834
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis30030179
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12082887
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12082888
|
994 |
|
|
|a 92
|b IZTAP
|