Cargando…

Fractography in failure analysis of polymers /

Fractography in Failure Analysis of Polymers provides a practical guide to the science of fractography and its application in the failure analysis of plastic components. In addition to a brief background on the theory of fractography, the authors discuss the various fractographic tools and technique...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hayes, Michael D. (Autor), Edwards, Dale B. (Autor), Shah, Anand R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam [Netherlands] : William Andrew, 2015.
Colección:Plastics Design Library.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Fractography in Failure Analysis of Polymers; Copyright Page; Contents; Foreword; Preface; Acknowledgments; 1 Introduction; 1.1 Motivations; 1.2 What Is Fractography?; 1.3 Plastic Material Structure-Property Relationship; 1.4 Components of a Failure Investigation; References; 2 Fractography as a Failure Analysis Tool; 2.1 Failure Analysis Fundamentals; 2.1.1 Causes Versus Mechanisms; 2.1.2 Primary Versus Secondary Causes; 2.1.3 Types of Root Causes; 2.1.4 Defects Versus Imperfections; 2.1.5 Deficiencies in Design and Material Selection; 2.2 The Scientific Method.
  • 2.2.1 Deductive Versus Inductive Reasoning and Fallacies2.3 Application of the Scientific Method; 2.3.1 Multidisciplinary Approach; 2.3.2 The Litigation Standard; 2.4 The Role of Fractography in Failure Analysis; References; 3 Instrumentation and Techniques; 3.1 Field or Site Instrumentation and Techniques; 3.1.1 Information Gathering; 3.1.2 Visual Inspection for Product Specific Information; 3.1.3 Visual ("Naked Eye") and Photographic Techniques; 3.1.4 Field Microscopy; 3.1.5 Photogrammetry and Digitization; 3.2 Microscopic Examination of Fracture Surfaces in a Laboratory.
  • 3.2.1 Optical Microscopy3.2.2 Scanning Electron Microscopy; 3.2.2.1 Environmental SEM; 3.3 Consideration and Selection of Instruments in Failure Analysis; 3.4 Summary; 3.5 Regulatory Agencies; References; 4 Fractography Basics; 4.1 Fracture Surface Features and Interpretation; 4.1.1 What Failure Characteristics Are Normally Associated with This Material?; 4.1.2 What Is the Location and Nature of the Fracture Origin?; 4.1.3 Is the Fracture Surface Brittle or Ductile-How Ductile?; 4.1.4 Is the Fracture Surface Smooth or Rough, Dull or Glossy?
  • 4.1.5 Is Stress Whitening Present Anywhere on the Fracture Surface?4.1.6 What Is the Nature of Striations and Other Marks on the Fracture Surface-Was the Fracture Fast or Slow?; 4.1.7 Do the Mating Halves of the Fracture Show the Same Crack Direction?; 4.1.8 Is the Crack Straight or Curved?; 4.1.9 Are There Branches, Bifurcations, or T-Junctions of the Crack in the Part?; 4.1.10 Are Both SCG and Fast Fracture Areas Present on the Fracture Surface?; 4.1.11 Is There Any Foreign Material or Chemical Evident on the Surface?; 4.2 Brittle Versus Ductile Failures in Polymers.
  • 4.2.1 Plane Stress and Plane Strain4.2.2 Cautions; 4.3 Crack Path Analysis; 4.4 Fracture Features; 4.4.1 Fracture Origin(s); 4.4.2 Mirror Zone; 4.4.3 Mist Region; 4.4.4 Rib Markings/Beach Marks; 4.4.5 Hackles; 4.4.6 River Patterns or River Markings; 4.4.7 Wallner Lines; 4.4.8 Fatigue Striations; 4.4.8.1 Fatigue Crack Growth Versus SCG; 4.4.9 Conic or Parabolic Markings; 4.4.10 Ratchet Marks or Ledges; 4.5 Application of Fractography to Failure Analysis; References; 5 Long-Term Failure Mechanisms in Plastics; 5.1 Introduction; 5.2 Creep; 5.3 SCG/Creep Rupture; 5.4 Environmental Stress Cracking.