Polyethylene-based blends, composites and nanocomposites /
"The book focusses on the recent technical research accomplishments in the area of polyethylene-based blends, composites and nanocomposites by looking at the various aspects of processing, morphology, properties and applications. In particular, the book details the important developments in are...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley,
[2015]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- 1 Polyethylene-Based Blends, Composites and Nanocomposites: State-of-the-Art, New Challenges and Opportunities
- 1.1 Ultra High Molecular Weight Polyethylene (UHMWPE) for Orthopaedic Devices: Structure/Property Relationships
- 1.1.1 Introduction
- HDPE and UHMWPE
- 1.1.2 Chemical Structure
- 1.1.3 Crystallinity and Melting Behavior
- 1.1.4 Molecular Weight
- 1.2 Stabilization of Irradiated Polyethylene by Introduction of Antioxidants (Vitamin E)
- 1.2.1 Introduction
- 1.2.2 Vitamin E Stabilized Polyethylenes
- 1.3 Polyethylene-Based Conducting Polymer Blends and Composites
- 1.3.1 Introduction
- 1.3.2 Preparation
- 1.4 Polyethylene Composites with Lignocellulosic Material: A Brief Overview
- 1.4.1 Introduction
- 1.4.2 Coupling Agents and Fibre Chemical Treatments
- 1.5 LDH as Nanofillers of Nanocomposite Materials Based on Polyethylene
- 1.6 Ultra High Molecular Weight Polyethylene and its Reinforcement/Oxidative Stability with Carbon Nanotubes in Medical Devices
- 1.7 Montmorillonite Polyethylene Nanocomposites
- 1.8 Characterization Methods for Polyethylene-Based Composites and Nanocomposites
- References
- 2 Ultra High Molecular Weight Polyethylene (UHMWPE) for Orthopaedic Devices: Structure/Property Relationships
- 2.1 Introduction
- HDPE and UHMWPE
- 2.2 Chemical Structure
- 2.3 Crystallinity and Melting Behaviour
- 2.3.1 Avrami Theory
- 2.3.2 Lauritzen
- Hoffman Theory
- 2.3.3 Crystal Growth Regimes
- 2.4 Molecular weight
- 2.5 Mechanical Properties
- 2.5.1 Creep
- 2.6 Sterilisation by Gamma Rays
- 2.7 Conclusion and Future Trends
- References
- 3 Stabilization of Irradiated Polyethylene by Introduction of Antioxidants (Vitamin E)
- 3.1 Introduction
- 3.2 Types of Antioxidants
- 3.2.1 Mechanism of Oxidation.
- 3.2.2 General Principles of Stabilization
- 3.2.2.1 Stabilization by Decreasing Initiation Rate
- 3.2.2.1 Stabilization by Increase Termination Rate
- 3.3 Stabilization by Vitamin E
- 3.3.1 Structure and Biological Function of Vitamin E
- 3.3.2 Mechanism of Stabilization of Vitamin E
- 3.3.3 Methods of Incorporation of Vitamin E
- 3.3.3.1 Strategy for Adding Vitamin E
- 3.3.3.2 On the Solubility of Vitamin E in UHMWPE
- 3.3.3.3 On the Diffusivity of Vitamin E in UHMWPE
- 3.3.4 Vitamin E Stabilized Polyethylenes
- 3.4 Analysis of the Content of Vitamin E
- 3.4.1 FTIR
- 3.4.2 UV
- 3.4.3 HPLC
- 3.4.4 Thermal Methods
- 3.5 Conclusions
- APPENDIX: Structure of Stabilizers
- References
- 4 Polyethylene-Based Conducting Polymer Blends and Composites
- 4.1 Introduction
- 4.2 Preparation
- 4.2.1 In situ Polymerization
- 4.2.2 Solution Blending
- 4.2.3 Melt Blending
- 4.3 Characterization
- 4.3.1 Spectroscopy
- 4.3.1.1 Fourier Transform Infrared (FTIR) Spectroscopy
- 4.3.1.2 Raman Spectroscopy
- 4.3.1.3 UV-vis Spectroscopy
- 4.3.1.4 X-ray Photoelectron Spectroscopy (XPS)
- 4.3.1.5 Electron Spin Resonance Spectroscopy (ESR)
- 4.3.2 Microscopy
- 4.3.3 Thermal Analysis
- 4.3.4 X-ray Diffraction
- 4.4 Properties
- 4.4.1 Mechanical
- 4.4.2 Electrical Conductivity
- 4.4.3 Antioxidant
- 4.4.4 Antimicrobial
- 4.5 Applications
- 4.5.1 Antistatic Materials
- 4.5.2 Food Packaging
- 4.5.3 Membranes
- 4.6 Concluding Remarks
- Acknowledgement
- References
- 5 Polyethylene Composites with Lignocellulosic Material
- 5.1 Introduction
- 5.2 Materials
- 5.2.1 Polyolefins
- 5.2.2 Recycled Polyolefins
- 5.2.3 Natural Fibres
- 5.3 Coupling Agents and Fibre Chemical Treatments
- 5.3.1 Coupling Agents used in Compounding
- 5.3.2 Chemical Pretreatments of Lignocellulosic Fibres
- 5.4 Composites Processing and Properties.
- 5.4.1 Extrusion
- 5.4.2 Compression Moulding
- 5.4.3 Injection Moulding
- 5.4.4 Pultrusion
- 5.4.5 Rotational Moulding
- 5.5 Industrial Applications of Polyethylene with Lignocellulosic Fibres
- 5.6 Conclusions and Future Trends
- References
- 6 Layered Double Hydroxides as Nanofillers of Composites and Nanocomposite Materials Based on Polyethylene
- 6.1 Introduction
- 6.2 Composites and Nanocomposites with Lamellar Fillers
- 6.3 Layered Double Hydroxides: Structure, Properties and Uses
- 6.3.1 Structure
- 6.3.2 Chemical Composition
- 6.3.3 Applications
- 6.3.4 Preparation Procedures
- 6.3.4.1 Precipitation Procedures
- 6.3.4.2 Induced Hydrolysis
- 6.3.4.3 The Salt-Oxide Method
- 6.3.4.4 Anion Exchange
- 6.3.4.5 The Reconstruction Method
- 6.3.4.6 The Sol-Gel Method
- 6.3.4.7 Urea Hydrolysis
- 6.3.5 Post-Synthesis Treatments
- 6.3.5.1 Hydrothermal Treatment
- 6.3.5.2 Microwave Treatment
- 6.4 Polyethylene as a Base of Blend Materials
- 6.5 Strategies of Preparation: Synthesis of Composites and Nanocomposites using Modified LDHs
- 6.6 Preparation of LDH-PE Materials
- 6.6.1 Modification of the LDH
- 6.6.2 Addition of Compatibilizers to PE
- 6.6.3 Alternate Preparation Procedures
- 6.7 Characterisation of LDH-PE Materials
- 6.8 Properties of LDH-PE Materials
- 6.8.1 Mechanical Properties
- 6.8.2 Thermal Properties
- 6.8.3 Electrical Properties
- 6.8.4 Chemical Properties
- 6.8.5 Other Properties
- 6.9 Uses of LDH-PE Materials
- 6.10 Conclusions and Current Trends of Development of LDH-PE Materials
- Acknowledgments
- References
- 7 Ultra High Molecular Weight Polyethylene and its Reinforcement with Carbon Nanotubes in Medical Devices
- 7.1 Introduction
- 7.2 UHMWPE for Total Joint Arthroplasty
- 7.3 Biocompatibility of CNTs and UHMWPE-CNT Nanocomposites.
- 7.4 Manufacturing Processes of UHMWPE-CNT Nanocomposites
- 7.4.1 CNTs Functionalization
- 7.4.1.1 Covalent Functionalization
- 7.4.1.2 Non-covalent Functionalization
- 7.4.2 Processing UHMWPE-CNTs
- 7.4.2.1 Solution Mixing
- 7.4.2.2 In situ Polymerization
- 7.4.2.3 Melt Mechanical Mixing
- 7.5 Tribological Behaviour of UHMWPE and UHMWPE-CNT Nanocomposites
- 7.5.1 Tribological Behaviour of UHMWPE
- 7.5.2 Tribological Behaviour of UHMWPE/MWCNTs Composites
- 7.6 Aging of UHMWPE and UHMWPE-CNT Nanocomposites
- 7.7 Characterization of Irradiated UHMWPE and UHMWPEMWCNTs Nanocomposites
- 7.7.1 Irradiation of UHMWPE
- 7.7.2 Irradiated UHMWPE/MWCNTs Composites
- 7.8 Viscoelastic Behavior and Dynamic Characterization using DMA
- 7.8.1 Creep Testing and Modeling
- 7.8.2 Dynamic Mechanical and Thermal Analysis
- 7.9 Conclusion
- Acknowledgements
- References
- 8 Montmorillonite Polyethylene Nanocomposites
- 8.1 Introduction
- 8.2 Montmorillonite
- 8.2.1 General Description
- 8.2.2 Surface Modification Techniques
- 8.2.3 Characterization and Properties
- 8.2.3.1 Elemental Analysis
- 8.2.3.2 X-Ray Diffraction (XRD)
- 8.2.3.3 Microscopy Techniques: Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
- 8.2.3.4 Thermogravimetric Analysis (TGA)
- 8.2.3.5 Other Tests
- 8.3 Formulations and Processing Methods of OMt PE CPN
- 8.3.1 Effect of Components in the OMt PE CPN Formulations
- 8.3.2 Effect of Processing Conditions
- 8.4 Properties of OMt PE CPN
- 8.4.1 Thermal Stability
- 8.4.2 Mechanical Properties
- 8.4.3 Barrier Properties
- 8.5 Applications of Clay Polymer Nanocomposites
- 8.6 Future Trends and Challenges
- References
- 9 Characterization Methods for Polyethylene-based Composites and Nanocomposites
- 9.1 Introduction
- 9.2 Processing PE Composites
- 9.2.1 Extrusion of PE Composites.
- 9.2.2 Injection Molding
- 9.2.3 Compression Molding
- 9.3 Characterization
- 9.3.1 Mechanical Properties
- 9.3.1.1 Tensile Testing
- 9.3.1.2 Flexural Tests
- 9.3.1.3 Impact Tests
- 9.3.1.4 Hardness Properties
- 9.3.1.5 Dynamic Mechanical Analysis
- 9.3.2 Thermal Properties
- 9.3.2.1 Differential Scanning Calorimetry (DSC)
- 9.3.2.2 Thermogravimetric Analysis (TGA)
- 9.3.3 Morphological Analysis
- 9.3.3.1 Transmission Electron Microscopy (TEM)
- 9.3.3.2 Scanning Electron Microscope (SEM)
- 9.3.4 Rheological Measurements
- 9.3.5 X-ray Diffraction
- 9.4 Conclusions
- References
- Index
- EULA.