Cargando…

Polyethylene-based blends, composites and nanocomposites /

"The book focusses on the recent technical research accomplishments in the area of polyethylene-based blends, composites and nanocomposites by looking at the various aspects of processing, morphology, properties and applications. In particular, the book details the important developments in are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: P. M., Visakh (Editor ), Martínez Morlanes, María Jose (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, [2015]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • 1 Polyethylene-Based Blends, Composites and Nanocomposites: State-of-the-Art, New Challenges and Opportunities
  • 1.1 Ultra High Molecular Weight Polyethylene (UHMWPE) for Orthopaedic Devices: Structure/Property Relationships
  • 1.1.1 Introduction
  • HDPE and UHMWPE
  • 1.1.2 Chemical Structure
  • 1.1.3 Crystallinity and Melting Behavior
  • 1.1.4 Molecular Weight
  • 1.2 Stabilization of Irradiated Polyethylene by Introduction of Antioxidants (Vitamin E)
  • 1.2.1 Introduction
  • 1.2.2 Vitamin E Stabilized Polyethylenes
  • 1.3 Polyethylene-Based Conducting Polymer Blends and Composites
  • 1.3.1 Introduction
  • 1.3.2 Preparation
  • 1.4 Polyethylene Composites with Lignocellulosic Material: A Brief Overview
  • 1.4.1 Introduction
  • 1.4.2 Coupling Agents and Fibre Chemical Treatments
  • 1.5 LDH as Nanofillers of Nanocomposite Materials Based on Polyethylene
  • 1.6 Ultra High Molecular Weight Polyethylene and its Reinforcement/Oxidative Stability with Carbon Nanotubes in Medical Devices
  • 1.7 Montmorillonite Polyethylene Nanocomposites
  • 1.8 Characterization Methods for Polyethylene-Based Composites and Nanocomposites
  • References
  • 2 Ultra High Molecular Weight Polyethylene (UHMWPE) for Orthopaedic Devices: Structure/Property Relationships
  • 2.1 Introduction
  • HDPE and UHMWPE
  • 2.2 Chemical Structure
  • 2.3 Crystallinity and Melting Behaviour
  • 2.3.1 Avrami Theory
  • 2.3.2 Lauritzen
  • Hoffman Theory
  • 2.3.3 Crystal Growth Regimes
  • 2.4 Molecular weight
  • 2.5 Mechanical Properties
  • 2.5.1 Creep
  • 2.6 Sterilisation by Gamma Rays
  • 2.7 Conclusion and Future Trends
  • References
  • 3 Stabilization of Irradiated Polyethylene by Introduction of Antioxidants (Vitamin E)
  • 3.1 Introduction
  • 3.2 Types of Antioxidants
  • 3.2.1 Mechanism of Oxidation.
  • 3.2.2 General Principles of Stabilization
  • 3.2.2.1 Stabilization by Decreasing Initiation Rate
  • 3.2.2.1 Stabilization by Increase Termination Rate
  • 3.3 Stabilization by Vitamin E
  • 3.3.1 Structure and Biological Function of Vitamin E
  • 3.3.2 Mechanism of Stabilization of Vitamin E
  • 3.3.3 Methods of Incorporation of Vitamin E
  • 3.3.3.1 Strategy for Adding Vitamin E
  • 3.3.3.2 On the Solubility of Vitamin E in UHMWPE
  • 3.3.3.3 On the Diffusivity of Vitamin E in UHMWPE
  • 3.3.4 Vitamin E Stabilized Polyethylenes
  • 3.4 Analysis of the Content of Vitamin E
  • 3.4.1 FTIR
  • 3.4.2 UV
  • 3.4.3 HPLC
  • 3.4.4 Thermal Methods
  • 3.5 Conclusions
  • APPENDIX: Structure of Stabilizers
  • References
  • 4 Polyethylene-Based Conducting Polymer Blends and Composites
  • 4.1 Introduction
  • 4.2 Preparation
  • 4.2.1 In situ Polymerization
  • 4.2.2 Solution Blending
  • 4.2.3 Melt Blending
  • 4.3 Characterization
  • 4.3.1 Spectroscopy
  • 4.3.1.1 Fourier Transform Infrared (FTIR) Spectroscopy
  • 4.3.1.2 Raman Spectroscopy
  • 4.3.1.3 UV-vis Spectroscopy
  • 4.3.1.4 X-ray Photoelectron Spectroscopy (XPS)
  • 4.3.1.5 Electron Spin Resonance Spectroscopy (ESR)
  • 4.3.2 Microscopy
  • 4.3.3 Thermal Analysis
  • 4.3.4 X-ray Diffraction
  • 4.4 Properties
  • 4.4.1 Mechanical
  • 4.4.2 Electrical Conductivity
  • 4.4.3 Antioxidant
  • 4.4.4 Antimicrobial
  • 4.5 Applications
  • 4.5.1 Antistatic Materials
  • 4.5.2 Food Packaging
  • 4.5.3 Membranes
  • 4.6 Concluding Remarks
  • Acknowledgement
  • References
  • 5 Polyethylene Composites with Lignocellulosic Material
  • 5.1 Introduction
  • 5.2 Materials
  • 5.2.1 Polyolefins
  • 5.2.2 Recycled Polyolefins
  • 5.2.3 Natural Fibres
  • 5.3 Coupling Agents and Fibre Chemical Treatments
  • 5.3.1 Coupling Agents used in Compounding
  • 5.3.2 Chemical Pretreatments of Lignocellulosic Fibres
  • 5.4 Composites Processing and Properties.
  • 5.4.1 Extrusion
  • 5.4.2 Compression Moulding
  • 5.4.3 Injection Moulding
  • 5.4.4 Pultrusion
  • 5.4.5 Rotational Moulding
  • 5.5 Industrial Applications of Polyethylene with Lignocellulosic Fibres
  • 5.6 Conclusions and Future Trends
  • References
  • 6 Layered Double Hydroxides as Nanofillers of Composites and Nanocomposite Materials Based on Polyethylene
  • 6.1 Introduction
  • 6.2 Composites and Nanocomposites with Lamellar Fillers
  • 6.3 Layered Double Hydroxides: Structure, Properties and Uses
  • 6.3.1 Structure
  • 6.3.2 Chemical Composition
  • 6.3.3 Applications
  • 6.3.4 Preparation Procedures
  • 6.3.4.1 Precipitation Procedures
  • 6.3.4.2 Induced Hydrolysis
  • 6.3.4.3 The Salt-Oxide Method
  • 6.3.4.4 Anion Exchange
  • 6.3.4.5 The Reconstruction Method
  • 6.3.4.6 The Sol-Gel Method
  • 6.3.4.7 Urea Hydrolysis
  • 6.3.5 Post-Synthesis Treatments
  • 6.3.5.1 Hydrothermal Treatment
  • 6.3.5.2 Microwave Treatment
  • 6.4 Polyethylene as a Base of Blend Materials
  • 6.5 Strategies of Preparation: Synthesis of Composites and Nanocomposites using Modified LDHs
  • 6.6 Preparation of LDH-PE Materials
  • 6.6.1 Modification of the LDH
  • 6.6.2 Addition of Compatibilizers to PE
  • 6.6.3 Alternate Preparation Procedures
  • 6.7 Characterisation of LDH-PE Materials
  • 6.8 Properties of LDH-PE Materials
  • 6.8.1 Mechanical Properties
  • 6.8.2 Thermal Properties
  • 6.8.3 Electrical Properties
  • 6.8.4 Chemical Properties
  • 6.8.5 Other Properties
  • 6.9 Uses of LDH-PE Materials
  • 6.10 Conclusions and Current Trends of Development of LDH-PE Materials
  • Acknowledgments
  • References
  • 7 Ultra High Molecular Weight Polyethylene and its Reinforcement with Carbon Nanotubes in Medical Devices
  • 7.1 Introduction
  • 7.2 UHMWPE for Total Joint Arthroplasty
  • 7.3 Biocompatibility of CNTs and UHMWPE-CNT Nanocomposites.
  • 7.4 Manufacturing Processes of UHMWPE-CNT Nanocomposites
  • 7.4.1 CNTs Functionalization
  • 7.4.1.1 Covalent Functionalization
  • 7.4.1.2 Non-covalent Functionalization
  • 7.4.2 Processing UHMWPE-CNTs
  • 7.4.2.1 Solution Mixing
  • 7.4.2.2 In situ Polymerization
  • 7.4.2.3 Melt Mechanical Mixing
  • 7.5 Tribological Behaviour of UHMWPE and UHMWPE-CNT Nanocomposites
  • 7.5.1 Tribological Behaviour of UHMWPE
  • 7.5.2 Tribological Behaviour of UHMWPE/MWCNTs Composites
  • 7.6 Aging of UHMWPE and UHMWPE-CNT Nanocomposites
  • 7.7 Characterization of Irradiated UHMWPE and UHMWPEMWCNTs Nanocomposites
  • 7.7.1 Irradiation of UHMWPE
  • 7.7.2 Irradiated UHMWPE/MWCNTs Composites
  • 7.8 Viscoelastic Behavior and Dynamic Characterization using DMA
  • 7.8.1 Creep Testing and Modeling
  • 7.8.2 Dynamic Mechanical and Thermal Analysis
  • 7.9 Conclusion
  • Acknowledgements
  • References
  • 8 Montmorillonite Polyethylene Nanocomposites
  • 8.1 Introduction
  • 8.2 Montmorillonite
  • 8.2.1 General Description
  • 8.2.2 Surface Modification Techniques
  • 8.2.3 Characterization and Properties
  • 8.2.3.1 Elemental Analysis
  • 8.2.3.2 X-Ray Diffraction (XRD)
  • 8.2.3.3 Microscopy Techniques: Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
  • 8.2.3.4 Thermogravimetric Analysis (TGA)
  • 8.2.3.5 Other Tests
  • 8.3 Formulations and Processing Methods of OMt PE CPN
  • 8.3.1 Effect of Components in the OMt PE CPN Formulations
  • 8.3.2 Effect of Processing Conditions
  • 8.4 Properties of OMt PE CPN
  • 8.4.1 Thermal Stability
  • 8.4.2 Mechanical Properties
  • 8.4.3 Barrier Properties
  • 8.5 Applications of Clay Polymer Nanocomposites
  • 8.6 Future Trends and Challenges
  • References
  • 9 Characterization Methods for Polyethylene-based Composites and Nanocomposites
  • 9.1 Introduction
  • 9.2 Processing PE Composites
  • 9.2.1 Extrusion of PE Composites.
  • 9.2.2 Injection Molding
  • 9.2.3 Compression Molding
  • 9.3 Characterization
  • 9.3.1 Mechanical Properties
  • 9.3.1.1 Tensile Testing
  • 9.3.1.2 Flexural Tests
  • 9.3.1.3 Impact Tests
  • 9.3.1.4 Hardness Properties
  • 9.3.1.5 Dynamic Mechanical Analysis
  • 9.3.2 Thermal Properties
  • 9.3.2.1 Differential Scanning Calorimetry (DSC)
  • 9.3.2.2 Thermogravimetric Analysis (TGA)
  • 9.3.3 Morphological Analysis
  • 9.3.3.1 Transmission Electron Microscopy (TEM)
  • 9.3.3.2 Scanning Electron Microscope (SEM)
  • 9.3.4 Rheological Measurements
  • 9.3.5 X-ray Diffraction
  • 9.4 Conclusions
  • References
  • Index
  • EULA.