Cargando…

Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications /

"With the proliferation of electronic devices, the world will need to double its energy supply by 2050. This book addresses this challenge and discusses synthesis and characterization of carbon nanomaterials for energy conversion and storage"--

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Lu, Wen (Materials scientist), Baek, Jong-Beom, Dai, Liming, 1961-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Fullerenes, Higher Fullerenes, and Their Hytrids: Synthesis, Characterization, and Environmental Considerations
  • 1.1. Introduction
  • 1.2. Fullerene, Higher Fullerenes, and Nanohybrids: Structures and Historical Perspective
  • 1.2.1.C60 Fullerene
  • 1.2.2. Higher Fullerenes
  • 1.2.3. Fullerene-Based Nanohybrids
  • 1.3. Synthesis and Characterization
  • 1.3.1. Fullerenes and Higher Fullerenes
  • 1.3.1.1. Carbon Soot Synthesis
  • 1.3.1.2. Extraction, Separation, and Purification
  • 1.3.1.3. Chemical Synthesis Processes
  • 1.3.1.4. Fullerene-Based Nanohybrids
  • 1.3.2. Characterization
  • 1.3.2.1. Mass Spectroscopy
  • 1.3.2.2. NMR
  • 1.3.2.3. Optical Spectroscopy
  • 1.3.2.4. HPLC
  • 1.3.2.5. Electron Microscopy
  • 1.3.2.6. Static and Dynamic Light Scattering
  • 1.4. Energy Applications
  • 1.4.1. Solar Cells and Photovoltaic Materials
  • 1.4.2. Hydrogen Storage Materials
  • 1.4.3. Electronic Components (Batteries, Capacitors, and Open-Circuit Voltage Applications).
  • 1.4.4. Superconductivity, Electrical, and Electronic Properties Relevant to Energy Applications
  • 1.4.5. Photochemical and Photophysical Properties Pertinent for Energy Applications
  • 1.5. Environmental Considerations for Fullerene Synthesis and Processing
  • 1.5.1. Existing Environmental Literature for C60
  • 1.5.2. Environmental Literature Status for Higher Fullerenes and NHs
  • 1.5.3. Environmental Considerations
  • 1.5.3.1. Consideration for Solvents
  • 1.5.3.2. Considerations for Derivatization
  • 1.5.3.3. Consideration for Coatings
  • References
  • 2. Carbon Nanotubes
  • 2.1. Synthesis of Carbon Nanotubes
  • 2.1.1. Introduction and Structure of Carbon Nanotube
  • 2.1.2. Arc Discharge and Laser Ablation
  • 2.1.3. Chemical Vapor Deposition
  • 2.1.4. Aligned Growth
  • 2.1.5. Selective Synthesis of Carbon Nanotubes
  • 2.1.6. Summary
  • 2.2. Characterization of Nanotubes
  • 2.2.1. Introduction
  • 2.2.2. Spectroscopy
  • 2.2.2.1. Raman Spectroscopy.
  • 2.2.2.2. Optical Absorption (UV-Vis-NIR)
  • 2.2.2.3. Photoluminescence Spectroscopy
  • 2.2.3. Microscopy
  • 2.2.3.1. Scanning Tunneling Microscopy and Transmission Electron Microscopy
  • 2.3. Summary
  • References
  • 3. Synthesis and Characterization of Graphene
  • 3.1. Introduction
  • 3.2. Overview of Graphene Synthesis Methodologies
  • 3.2.1. Mechanical Exfoliation
  • 3.2.2. Chemical Exfoliation
  • 3.2.3. Chemical Synthesis: Graphene from Reduced Graphene Oxide
  • 3.2.4. Direct Chemical Synthesis
  • 3.2.5. CVD Process
  • 3.2.5.1. Graphene Synthesis by CVD Process
  • 3.2.5.2. Graphene Synthesis by Plasma CVD Process
  • 3.2.5.3. Grain and GBs in CVD Graphene
  • 3.2.6. Epitaxial Growth of Graphene on SiC Surface
  • 3.3. Graphene Characterizations
  • 3.3.1. Optical Microscopy
  • 3.3.2. Raman Spectroscopy
  • 3.3.3. High Resolution Transmission Electron Microscopy
  • 3.3.4. Scanning Probe Microscopy
  • 3.4. Summary and Outlook
  • References.
  • 4. Doping Carbon Nanomaterials with Heteroatoms
  • 4.1. Introduction
  • 4.2. Local Bonding of the Dopants
  • 4.3. Synthesis of Heterodoped Nanocarbons
  • 4.4. Characterization of Heterodoped Nanotubes and Graphene
  • 4.5. Potential Applications
  • 4.6. Summary and Outlook
  • References
  • 5. High-Performance Polymer Solar Cells Containing Carbon Nanomaterials
  • 5.1. Introduction
  • 5.2. Carbon Nanomaterials as Transparent Electrodes
  • 5.2.1. CNT Electrode
  • 5.2.2. Graphene Electrode
  • 5.2.3. Graphene/CNT Hybrid Electrode
  • 5.3. Carbon Nanomaterials as Charge Extraction Layers
  • 5.4. Carbon Nanomaterials in the Active Layer
  • 5.4.1. Carbon Nanomaterials as an Electron Acceptor
  • 5.4.2. Carbon Nanomaterials as Additives
  • 5.4.3. Donor/Acceptor Functionalized with Carbon Nanomaterials
  • 5.5. Concluding Remarks
  • Acknowledgments
  • References
  • 6. Graphene for Energy Solutions and Its Printable Applications
  • 6.1. Introduction to Graphene.
  • 6.2. Energy Harvesting from Solar Cells
  • 6.2.1. DSSCs
  • 6.2.2. Graphene and DSSCs
  • 6.2.2.1. Counter Electrode
  • 6.2.2.2. Photoanode
  • 6.2.2.3. Transparent Conducting Oxide
  • 6.2.2.4. Electrolyte
  • 6.3. OPV Devices
  • 6.3.1. Graphene and OPVs
  • 6.3.1.1. Transparent Conducting Oxide
  • 6.3.1.2. BHJ
  • 6.3.1.3. Hole Transport Layer
  • 6.4. Lithium-Ion Batteries
  • 6.4.1. Graphene and Lithium-Ion Batteries
  • 6.4.1.1. Anode Material
  • 6.4.1.2. Cathode Material
  • 6.4.2. Li-S and Li-O2 Batteries
  • 6.5. Supercapacitors
  • 6.5.1. Graphene and Supercapacitors
  • 6.6. Graphene Inks
  • 6.7. Conclusions
  • References
  • 7. Quantum Dot and Heterojunction Solar Cells Containing Carbon Nanomaterials
  • 7.1. Introduction
  • 7.2. QD Solar Cells Containing Carbon Nanomaterials
  • 7.2.1. CNTs and Graphene as TCE in QD Solar Cells
  • 7.2.1.1. CNTs as TCE Material in QD Solar Cells
  • 7.2.1.2. Graphene as TCE Material in QD Solar Cells.
  • 7.2.2. Carbon Nanomaterials and QD Composites in Solar Cells
  • 7.2.2.1.C60 and QD Composites
  • 7.2.2.2. CNTs and QD Composites
  • 7.2.2.3. Graphene and QD Composites
  • 7.2.3. Graphene QDs Solar Cells
  • 7.2.3.1. Physical Properties of GQDs
  • 7.2.3.2. Synthesis of GQDs
  • 7.2.3.3. PV Devices of GQDs
  • 7.3. Carbon Nanomaterial/Semiconductor Heterojunction Solar Cells
  • 7.3.1. Principle of Carbon/Semiconductor Heterojunction Solar Cells
  • 7.3.2.a-C/Semiconductor Heterojunction Solar Cells
  • 7.3.3. CNT/Semiconductor Heterojunction Solar Cells
  • 7.3.4. GraphenelSemiconcluctot lieteroSunction Solar Cells
  • 7.4. Summary
  • References
  • 8. Fuel Cell Catalysts Based on Carbon Nanomaterials
  • 8.1. Introduction
  • 8.2. Nanocarbon-Supported Catalysts
  • 8.2.1. CNT-Supported Catalysts
  • 8.2.2. Graphene-Supported Catalysts
  • 8.3. Interface Interaction between Pt Clusters and Graphitic Surface
  • 8.4. Carbon Catalyst
  • 8.4.1. Catalytic Activity for ORR.
  • 8.4.2. Effect of N-Dope on O2 Adsorption
  • 8.4.3. Effect of N-Dope on the Local Electronic Structure for Pyridinic-N and Graphitic-N
  • 8.4.3.1. Pyridinic-N
  • 8.4.3.2. Graphitic-N
  • 8.4.4. Summary of Active Sites for ORR
  • References
  • 9. Supercapacitors Based on Carbon Nanomaterials
  • 9.1. Introduction
  • 9.2. Supercapacitor Technology and Performance
  • 9.3. Nanoporous Carbon
  • 9.3.1. Supercapacitors with Nonaqueous Electrolytes
  • 9.3.2. Supercapacitors with Aqueous Electrolytes
  • 9.4. Graphene and Carbon Nanotubes
  • 9.5. Nanostructured Carbon Composites
  • 9.6. Other Composites with Carbon Nanomaterials
  • 9.7. Conclusions
  • References
  • 10. Lithium-Ion Batteries Based on Carbon Nanomaterials
  • 10.1. Introduction
  • 10.2. Improving Li-Ion Battery Energy Density
  • 10.3. Improvements to Lithium-Ion Batteries Using Carbon Nanomaterials
  • 10.3.1. Carbon Nanomaterials as Active Materials
  • 10.4. Carbon Nanomaterials as Conductive Additives.
  • 10.4.1. Current and SOA Conductive Additives
  • 10.5. SWCNT Additives to Increase Energy Density
  • 10.6. Carbon Nanomaterials as Current Collectors
  • 10.6.1. Current Collector Options
  • 10.7. Implementation of Carbon Nanomaterial Current Collectors for Standard Electrode Composites
  • 10.7.1. Anode: MCMB Active Material
  • 10.7.2. Cathode: NCA Active Material
  • 10.8. Implementation of Carbon Nanomaterial Current Collectors for Alloying Active Materials
  • 10.9. Ultrasonic Bonding for Pouch Cell Development
  • 10.10. Conclusion
  • References
  • 11. Lithium/Sulfur Batteries Based on Carbon Nanomaterials
  • 11.1. Introduction
  • 11.2. Fundamentals of Lithium/Sulfur Cells
  • 11.2.1. Operating Principles
  • 11.2.2. Scientific Problems
  • 11.2.2.1. Dissolution and Shuttle Effect of Lithium Polysulfides
  • 11.2.2.2. Insulating Nature of Sulfur and Li2S
  • 11.2.2.3. Volume Change of the Sulfur Electrode during Cycling
  • 11.2.3. Research Strategy.
  • 11.3. Nanostructure Carbon-Sulfur
  • 11.3.1. Porous Carbon-Sulfur Composite
  • 11.3.2. One-Dimensional Carbon-Sulfur Composite
  • 11.3.3. Two-Dimensional Carbon (Graphene)-Sulfur
  • 11.3.4. Three-Dimensional Carbon Paper-Sulfur
  • 11.3.5. Preparation Method of Sulfur-Carbon Composite
  • 11.4. Carbon Layer as a Polysu1fide Separator
  • 11.5. Opportunities and Perspectives
  • References
  • 12. Lithium-Air Batteries Based on Carbon Nanomaterials
  • 12.1. Metal-Air Batteries
  • 12.2. Li-Air Chemistry
  • 12.2.1. Aqueous Electrolyte Cell
  • 12.2.2. Nonaqueous Aprotic Electrolyte Cell
  • 12.2.3. Mixed Aqueous/Aprotic Electrolyte Cell
  • 12.2.4. All Solid-State Cell
  • 12.3. Carbon Nanomaterials for Li-Air Cells Cathode
  • 12.4. Amorphous Carbons
  • 12.4.1. Porous Carbons
  • 12.5. Graphitic Carbons
  • 12.5.1. Carbon Nanotubes
  • 12.5.2. Graphene
  • 12.5.3.Composite Air Electrodes
  • 12.6. Conclusions
  • References
  • 13. Carbon-Based Nanomaterials for H2 Storage
  • 13.1. Introduction.
  • 13.2. Hydrogen Storage in Fullerenes
  • 13.3. Hydrogen Storage in Carbon Nanotubes
  • 13.4. Hydrogen Storage in Graphene-Based Materials
  • 13.5. Conclusions
  • Acknowledgments
  • References.