Cargando…

Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients /

"Many stochastic differential equations (SDEs) in the literature have a super linearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler Maruyama approximation method diverge for these SDEs in finite time. This article de...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hutzenthaler, Martin, 1978- (Autor), Jentzen, Arnulf (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society ; no. 1112.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn910951156
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 150416t20152014riu ob 000 0 eng d
040 |a UAB  |b eng  |e rda  |e pn  |c UAB  |d OCLCO  |d UIU  |d COD  |d OCLCO  |d COO  |d OCLCF  |d GZM  |d YDX  |d EBLCP  |d OCLCA  |d LEAUB  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 958353680 
020 |a 9781470422783  |q (online) 
020 |a 1470422786  |q (online) 
020 |z 9781470409845  |q (alk. paper) 
020 |z 1470409844  |q (alk. paper) 
029 1 |a CHNEW  |b 000950019 
029 1 |a CHVBK  |b 483161934 
029 1 |a AU@  |b 000069392246 
035 |a (OCoLC)910951156  |z (OCoLC)958353680 
050 4 |a QA274.23  |b .H88 2015 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Hutzenthaler, Martin,  |d 1978-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjtv9Gw686FtKhm3HHvcxC 
245 1 0 |a Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients /  |c Martin Hutzenthaler, Arnulf Jentzen. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2015. 
264 4 |c ©2014 
300 |a 1 online resource (v, 99 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266,  |x 1947-6221 ;  |v volume 236, number 1112 
588 0 |a Print version record. 
500 |a "Volume 236, number 1112 (second of 6 numbers), July 2015." 
504 |a Includes bibliographical references (pages 95-99). 
520 |a "Many stochastic differential equations (SDEs) in the literature have a super linearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete time stochastic processes. Using this approach, we establish moment bounds for fully and partially drift implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, we illustrate our results for several SDEs from finance, physics, biology and chemistry."--Page v 
505 0 |a Introduction -- Integrability properties of approximation processes for SDEs -- Convergence properties of approximation processes for SDEs -- Examples of SDEs -- Bibliography. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Stochastic differential equations. 
650 0 |a Differential operators. 
650 6 |a Équations différentielles stochastiques. 
650 6 |a Opérateurs différentiels. 
650 7 |a Differential operators  |2 fast 
650 7 |a Stochastic differential equations  |2 fast 
700 1 |a Jentzen, Arnulf,  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGCcrgpg3GKKJMM3YRKXtX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Hutzenthaler, Martin, 1978-  |t Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients.  |d Providence, RI : American Mathematical Society, 2015  |z 9781470409845  |w (DLC) 2015007761  |w (OCoLC)907132691 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1112. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832007  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444936 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4832007 
938 |a YBP Library Services  |b YANK  |n 13155118 
994 |a 92  |b IZTAP