Cargando…

Deformation quantization for actions of Kählerian lie groups /

Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelia...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bieliavsky, Pierre, 1970- (Autor), Gayral, V. (Victor), 1979- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society ; no. 1115.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn910951153
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 150416t20152014riu ob 000 0 eng d
040 |a UAB  |b eng  |e rda  |e pn  |c UAB  |d OCLCO  |d COD  |d UIU  |d COO  |d OCLCF  |d GZM  |d YDX  |d EBLCP  |d OCLCA  |d LEAUB  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 958353545 
020 |a 9781470422813  |q (online) 
020 |a 1470422816  |q (online) 
020 |z 9781470414917  |q (alk. paper) 
020 |z 1470414910  |q (alk. paper) 
029 1 |a AU@  |b 000069392245 
035 |a (OCoLC)910951153  |z (OCoLC)958353545 
050 4 |a QA387  |b .B54 2015 
082 0 4 |a 512/.482  |2 23 
049 |a UAMI 
100 1 |a Bieliavsky, Pierre,  |d 1970-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJr7VXH3tCttVG33jxCYT3 
245 1 0 |a Deformation quantization for actions of Kählerian lie groups /  |c Pierre Bieliavsky, Victor Gayral. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2015. 
264 4 |c ©2014 
300 |a 1 online resource (v, 154 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v volume 236, number 1115 
588 0 |a Print version record. 
500 |a "Volume 236, number 1115 (fifth of 6 numbers), July 2015." 
504 |a Includes bibliographical references (pages 153-154). 
505 0 |a Introduction -- Oscillatory integrals -- Tempered pairs for Kählerian Lie groups -- Non-formal star-products -- Deformation of Fréchet algebras -- Quantization of polarized symplectic symmetric spaces -- Quantization of Kählerian Lie groups -- Deformation of C*-algebras -- Bibliography. 
520 |a Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Lie groups. 
650 0 |a Kählerian structures. 
650 6 |a Groupes de Lie. 
650 6 |a Structures kählériennes. 
650 7 |a Kählerian structures  |2 fast 
650 7 |a Lie groups  |2 fast 
700 1 |a Gayral, V.  |q (Victor),  |d 1979-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjvvQ8w3Tdr9JrYXvhDVP3 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Deformation quantization for actions of Kählerian lie groups (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFKT7GK6V4HpbfBKbBY4WP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bieliavsky, Pierre, 1970-  |t Deformation Quantization for Actions of Kählerian Lie Groups.  |d Providence, RI : American Mathematical Society, 2015  |z 9781470414917  |w (DLC) 2015007760  |w (OCoLC)907132687 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1115. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832010  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444939 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4832010 
938 |a YBP Library Services  |b YANK  |n 13155121 
994 |a 92  |b IZTAP