|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn910951153 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
150416t20152014riu ob 000 0 eng d |
040 |
|
|
|a UAB
|b eng
|e rda
|e pn
|c UAB
|d OCLCO
|d COD
|d UIU
|d COO
|d OCLCF
|d GZM
|d YDX
|d EBLCP
|d OCLCA
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 958353545
|
020 |
|
|
|a 9781470422813
|q (online)
|
020 |
|
|
|a 1470422816
|q (online)
|
020 |
|
|
|z 9781470414917
|q (alk. paper)
|
020 |
|
|
|z 1470414910
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000069392245
|
035 |
|
|
|a (OCoLC)910951153
|z (OCoLC)958353545
|
050 |
|
4 |
|a QA387
|b .B54 2015
|
082 |
0 |
4 |
|a 512/.482
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bieliavsky, Pierre,
|d 1970-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJr7VXH3tCttVG33jxCYT3
|
245 |
1 |
0 |
|a Deformation quantization for actions of Kählerian lie groups /
|c Pierre Bieliavsky, Victor Gayral.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2015.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (v, 154 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v volume 236, number 1115
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 236, number 1115 (fifth of 6 numbers), July 2015."
|
504 |
|
|
|a Includes bibliographical references (pages 153-154).
|
505 |
0 |
|
|a Introduction -- Oscillatory integrals -- Tempered pairs for Kählerian Lie groups -- Non-formal star-products -- Deformation of Fréchet algebras -- Quantization of polarized symplectic symmetric spaces -- Quantization of Kählerian Lie groups -- Deformation of C*-algebras -- Bibliography.
|
520 |
|
|
|a Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Lie groups.
|
650 |
|
0 |
|a Kählerian structures.
|
650 |
|
6 |
|a Groupes de Lie.
|
650 |
|
6 |
|a Structures kählériennes.
|
650 |
|
7 |
|a Kählerian structures
|2 fast
|
650 |
|
7 |
|a Lie groups
|2 fast
|
700 |
1 |
|
|a Gayral, V.
|q (Victor),
|d 1979-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjvvQ8w3Tdr9JrYXvhDVP3
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Deformation quantization for actions of Kählerian lie groups (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFKT7GK6V4HpbfBKbBY4WP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Bieliavsky, Pierre, 1970-
|t Deformation Quantization for Actions of Kählerian Lie Groups.
|d Providence, RI : American Mathematical Society, 2015
|z 9781470414917
|w (DLC) 2015007760
|w (OCoLC)907132687
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1115.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832010
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444939
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4832010
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13155121
|
994 |
|
|
|a 92
|b IZTAP
|