Cargando…

Deformation quantization for actions of Kählerian lie groups /

Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelia...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bieliavsky, Pierre, 1970- (Autor), Gayral, V. (Victor), 1979- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society ; no. 1115.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a.
Notas:"Volume 236, number 1115 (fifth of 6 numbers), July 2015."
Descripción Física:1 online resource (v, 154 pages)
Bibliografía:Includes bibliographical references (pages 153-154).
ISBN:9781470422813
1470422816
ISSN:1947-6221 ;