Deformation quantization for actions of Kählerian lie groups /
Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelia...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2015.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1115. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Let \mathbb{B} be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action \alpha of \mathbb{B} on a Fréchet algebra \mathcal{A}. Denote by \mathcal{A}^\infty the associated Fréchet algebra of smooth vectors for this action. In the Abelian case \mathbb{B}=\mathbb{R}^{2n} and \alpha isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures \{\star_{\theta}^\alpha\}_{\theta\in\mathbb{R}} on \mathcal{A}^\infty. When \mathcal{A} is a. |
---|---|
Notas: | "Volume 236, number 1115 (fifth of 6 numbers), July 2015." |
Descripción Física: | 1 online resource (v, 154 pages) |
Bibliografía: | Includes bibliographical references (pages 153-154). |
ISBN: | 9781470422813 1470422816 |
ISSN: | 1947-6221 ; |