Cargando…

Effective CRM using predictive analytics /

A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chorianopoulos, Antonios
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, UK : John Wiley & Sons Inc., 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn910936405
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 150609s2015 enk ob 001 0 eng
010 |a  2015022946 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d N$T  |d DG1  |d IDEBK  |d EBLCP  |d CDX  |d COO  |d DEBSZ  |d DEBBG  |d IDB  |d DG1  |d TEFOD  |d LIP  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d OCLCQ  |d ICG  |d COCUF  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d IEEEE  |d OCLCO  |d OCLCL  |d EZC  |d OCLCO 
019 |a 992864450  |a 1034902864 
020 |a 9781119011569  |q (electronic bk.) 
020 |a 1119011566  |q (electronic bk.) 
020 |a 9781119011576  |q (electronic bk.) 
020 |a 1119011574  |q (electronic bk.) 
020 |a 9781119011583  |q (electronic bk.) 
020 |a 1119011582  |q (electronic bk.) 
020 |z 9781119011552  |q (cloth) 
020 |z 1119011558 
024 7 |a 10.1002/9781119011583  |2 doi 
029 1 |a AU@  |b 000056993565 
029 1 |a CHNEW  |b 000944426 
029 1 |a CHVBK  |b 480246602 
029 1 |a DEBBG  |b BV043399046 
029 1 |a DEBBG  |b BV043627288 
029 1 |a DEBSZ  |b 46117393X 
029 1 |a DEBSZ  |b 485059223 
035 |a (OCoLC)910936405  |z (OCoLC)992864450  |z (OCoLC)1034902864 
037 |a 3161368B-70BC-4381-A725-F6A60E8A697B  |b OverDrive, Inc.  |n http://www.overdrive.com 
037 |a 10066952  |b IEEE 
042 |a pcc 
050 0 0 |a HF5415.5 
072 7 |a BUS  |x 082000  |2 bisacsh 
072 7 |a BUS  |x 041000  |2 bisacsh 
072 7 |a BUS  |x 042000  |2 bisacsh 
072 7 |a BUS  |x 085000  |2 bisacsh 
082 0 0 |a 658.8/12  |2 23 
049 |a UAMI 
100 1 |a Chorianopoulos, Antonios. 
245 1 0 |a Effective CRM using predictive analytics /  |c Antonios Chorianopoulos. 
264 1 |a Chichester, West Sussex, UK :  |b John Wiley & Sons Inc.,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Title Page; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1 An overview of data mining: The applications, the methodology, the algorithms, and the data; 1.1 The applications; 1.2 The methodology; 1.3 The algorithms; 1.3.1 Supervised models; 1.3.1.1 Classification models; 1.3.1.2 Estimation (regression) models; 1.3.1.3 Feature selection (field screening); 1.3.2 Unsupervised models; 1.3.2.1 Cluster models; 1.3.2.2 Association (affinity) and sequence models; 1.3.2.3 Dimensionality reduction models; 1.3.2.4 Record screening models; 1.4 The data; 1.4.1 The mining datamart. 
505 8 |a 1.4.2 The required data per industry 1.4.3 The customer "signature": from the mining datamart to the enriched, marketing reference table; 1.5 Summary; Part I The Methodology; Chapter 2 Classification modeling methodology; 2.1 An overview of the methodology for classification modeling; 2.2 Business understanding and design of the process; 2.2.1 Definition of the business objective; 2.2.2 Definition of the mining approach and of the data model; 2.2.3 Design of the modeling process; 2.2.3.1 Defining the modeling population; 2.2.3.2 Determining the modeling (analysis) level. 
505 8 |a 2.2.3.3 Definition of the target event and population 2.2.3.4 Deciding on time frames; 2.3 Data understanding, preparation, and enrichment; 2.3.1 Investigation of data sources; 2.3.2 Selecting the data sources to be used; 2.3.3 Data integration and aggregation; 2.3.4 Data exploration, validation, and cleaning; 2.3.5 Data transformations and enrichment; 2.3.6 Applying a validation technique; 2.3.6.1 Split or Holdout validation; 2.3.6.2 Cross or n-fold validation; 2.3.6.3 Bootstrap validation; 2.3.7 Dealing with imbalanced and rare outcomes; 2.3.7.1 Balancing; 2.3.7.2 Applying class weights. 
505 8 |a 2.4 Classification modeling 2.4.1 Trying different models and parameter settings; 2.4.2 Combining models; 2.4.2.1 Bagging; 2.4.2.2 Boosting; 2.4.2.3 Random Forests; 2.5 Model evaluation; 2.5.1 Thorough evaluation of the model accuracy; 2.5.1.1 Accuracy measures and confusion matrices; 2.5.1.2 Gains, Response, and Lift charts; 2.5.1.3 ROC curve; 2.5.1.4 Profit/ROI charts; 2.5.2 Evaluating a deployed model with test-control groups; 2.6 Model deployment; 2.6.1 Scoring customers to roll the marketing campaign; 2.6.1.1 Building propensity segments. 
505 8 |a 2.6.2 Designing a deployment procedure and disseminating the results 2.7 Using classification models in direct marketing campaigns; 2.8 Acquisition modeling; 2.8.1.1 Pilot campaign; 2.8.1.2 Profiling of high-value customers; 2.9 Cross-selling modeling; 2.9.1.1 Pilot campaign; 2.9.1.2 Product uptake; 2.9.1.3 Profiling of owners; 2.10 Offer optimization with next best product campaigns; 2.11 Deep-selling modeling; 2.11.1.1 Pilot campaign; 2.11.1.2 Usage increase; 2.11.1.3 Profiling of customers with heavy product usage; 2.12 Up-selling modeling; 2.12.1.1 Pilot campaign; 2.12.1.2 Product upgrade. 
520 |a A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Customer relations  |x Management  |x Data processing. 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 7 |a BUSINESS & ECONOMICS  |x Industrial Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management Science.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Organizational Behavior.  |2 bisacsh 
650 7 |a Customer relations  |x Management  |x Data processing  |2 fast 
650 7 |a Data mining  |2 fast 
655 7 |a dissertations.  |2 aat 
655 7 |a Academic theses  |2 fast 
655 7 |a Academic theses.  |2 lcgft 
655 7 |a Thèses et écrits académiques.  |2 rvmgf 
758 |i has work:  |a Effective CRM using predictive analytics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG6Xhtm4KV3yDTHHc6vyh3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Chorianopoulos, Antonios.  |t Effective CRM using predictive analytics.  |d Chichester, West Sussex : John Wiley & Sons Inc., 2015  |z 9781119011552  |w (DLC) 2015020804 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4183006  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 31645701 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4183006 
938 |a EBSCOhost  |b EBSC  |n 1087870 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis31645701 
994 |a 92  |b IZTAP