Cargando…

The assignment of the absolute configuration by NMR using chiral derivatizing agents : a practical guide /

The Assignment of the Absolute Configuration by NMR Using Chiral Derivatizing Agents: A Practical Guide briefly explains the theoretical aspects necessary for understanding the methodology of new research in the field of Nuclear magnetic resonance spectroscopy (NMR), dedicating most of its space to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Seco, J. M. (José Manuel)
Otros Autores: Quiñoá, E. (Emilio), Riguera, R. (Ricardo)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Oxford University Press, [2015]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; The Assignment of the Absolute Configuration by NMR Using Chiral Derivatizing Agents; Copyright; Contents; Preface; Introduction; 1 The Theoretical Basis for Assignment by NMR; 1.1. Distinguishing Enantiomers by NMR: The Use of CDAs; 1.2. Structural Characteristics of the Auxiliaries and the Substrates; 1.3. Importance of the Conformation; 1.4. Importance of the Aromatic Shielding Effect; 1.5. Use of 13C NMR for Assignment; 1.6. Simplified Approaches to Assignment by NMR; 1.6.1. Single-Derivatization Method: Manipulating the Conformational Equilibrium by Temperature.
  • 1.6.2. Single-Derivatization Method: Manipulating the Conformational Equilibrium by Complexation1.6.3. Single-Derivatization Method Based on Esterification Shifts; 1.6.4. Mix-and-Shake Method: Assignment Using Resin-Bound CDAs; 1.7. General Criteria for the Correct Application of the NMR Methodology; 1.8. Correlation Models for the Assignment of Polyfunctional Compounds; 1.9. Summary; 2 Practical Aspects of the Preparation of the Derivatives; 2.1. Instrumentation, Concentration, Solvent, and Temperature of the NMR Experiment; 2.2. Source and Preparation of the CDAs.
  • 2.3. Preparation of the CDA Esters, Thioesters, and Amides2.3.1. Derivatization of Alcohols, Thiols, and Cyanohydrins Using the CDA Acid; 2.3.2. Derivatization of Amines Using the CDA Acid; 2.3.3. Preparation of the CDA Acid Chlorides; 2.3.4. Derivatization of Alcohols, Thiols, and Cyanohydrins Using the CDA Acid Chloride; 2.4. Resin-Bound CDA Derivatives (Mix-and-Shake Method); 2.4.1. Preparation of Resin-Bound CDA Derivatives; 2.4.2. Preparation of Acid Chloride Resins; 2.4.3. Preparation of CDA-Resins; 2.4.4. Determination of the Loading of the CDA-Resins.
  • 2.4.5. In-Tube Derivatization of Amines2.4.6. In-Tube Derivatization of Primary and Secondary Alcohols, Cyanohydrins, and Secondary Thiols; 2.4.7. In-Tube Derivatization of Amino Alcohols; 2.4.8. In-Tube Derivatization of Diols and Triols; 2.4.9. In-Tube Derivatization for Single-Derivatization Procedures; 3 Assignment of the Absolute Configuration of Monofunctional Compounds by Double Derivatization; 3.1. Secondary Alcohols; 3.1.1. MPA and 9-AMA as CDAs for Secondary Alcohols; 3.1.2. Example 1: Assignment of the Absolute Configuration of Diacetone D-Glucose Using MPA.
  • 3.1.3. Example 2: Assignment of the Absolute Configuration of (
  • )-Isopulegol Using 9-AMA3.1.4. Example 3: Assignment of the Absolute Configuration of (R)-Butan-2-ol Using MPA and 13C-NMR; 3.1.5. Simultaneous Derivatization of the Substrate with the (R)- and (S)-CDAs; 3.1.6. Example 4: Assignment of the Absolute Configuration of (S)-Butan-2-ol Using a 1:2 Mixture of (R)- and (S)-MPA; 3.1.7. Example 5: Assignment of the Absolute Configuration of (
  • )-Menthol Using a 2:1 Mixture of (R)- and (S)-9-AMA and 13C NMR; 3.1.8. MTPA as the CDA for Secondary Alcohols.