Cargando…

Dictionary learning in visual computing /

The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhang, Qiang (Computer scientist) (Autor), Li, Baoxin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham, Switzerland : Springer, [2015]
Colección:Synthesis lectures on image, video, and multimedia processing ; #18.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn909682091
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 150520s2015 sz a obd 000 0 eng c
040 |a WAU  |b eng  |e rda  |e pn  |c WAU  |d OCLCO  |d EBLCP  |d UMI  |d OCLCO  |d DEBSZ  |d OCLCO  |d YDXCP  |d COO  |d OCLCF  |d OCLCO  |d UAB  |d OCLCQ  |d CEF  |d RRP  |d U3W  |d INT  |d OCLCQ  |d WYU  |d LVT  |d YOU  |d OCLCQ  |d AU@  |d OCLCQ  |d N$T  |d OCLCO  |d UKAHL  |d OCLCO  |d GW5XE  |d YDX  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 910936495  |a 1322047019  |a 1351989342 
020 |a 1627057781  |q (ebook) 
020 |a 1627057773 
020 |a 9781627057776 
020 |a 9781627057783  |q (electronic bk.) 
020 |a 9783031022531  |q (electronic bk.) 
020 |a 303102253X  |q (electronic bk.) 
020 |z 9783031011252 
024 7 |a 10.2200/S00640ED1V01Y201504IVM018  |2 doi 
024 7 |a 10.1007/978-3-031-02253-1  |2 doi 
029 1 |a DEBSZ  |b 433577665 
029 1 |a DEBSZ  |b 469714972 
029 1 |a NZ1  |b 16091424 
029 1 |a AU@  |b 000072156690 
035 |a (OCoLC)909682091  |z (OCoLC)910936495  |z (OCoLC)1322047019  |z (OCoLC)1351989342 
037 |a CL0500000603  |b Safari Books Online 
042 |a pcc 
050 4 |a TA1637.5 
082 0 4 |a 004.03  |a 006.8 
049 |a UAMI 
100 1 |a Zhang, Qiang  |c (Computer scientist),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjqVXKj8mFt9mKHkvyrpKb 
245 1 0 |a Dictionary learning in visual computing /  |c Qiang Zhang, Samsung, Baoxin Li, Arizona State University. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2015] 
300 |a 1 online resource (xvii, 133 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Synthesis lectures on image, video, & multimedia processing,  |x 1559-8144 ;  |v #18 
588 0 |a Online resource; title from PDF title page (Morgan & Claypool, viewed on May 20, 2015). 
504 |a Includes bibliographical references (pages 109-132). 
505 0 |a Introduction -- Fundamental Computing Tasks in Sparse Representation -- Dictionary Learning Algorithms -- Applications of Dictionary Learning in Visual Computing -- An Instructive Case Study with Face Recognition. 
520 3 |a The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Image processing  |x Mathematics. 
650 0 |a Machine learning. 
650 0 |a Computer vision. 
650 6 |a Traitement d'images  |x Mathématiques. 
650 6 |a Apprentissage automatique. 
650 6 |a Vision par ordinateur. 
650 7 |a Computer vision  |2 fast 
650 7 |a Image processing  |x Mathematics  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Li, Baoxin,  |e author. 
758 |i has work:  |a Dictionary learning in visual computing (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGhVmPCFH6hP3BrxTWXBdP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781627057776 
830 0 |a Synthesis lectures on image, video, and multimedia processing ;  |v #18.  |x 1559-8136 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=2055379  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38017609 
938 |a EBL - Ebook Library  |b EBLB  |n EBL2055379 
938 |a YBP Library Services  |b YANK  |n 12433567 
938 |a EBSCOhost  |b EBSC  |n 995207 
938 |a YBP Library Services  |b YANK  |n 17953340 
994 |a 92  |b IZTAP