|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn909367809 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
150519s2015 si ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d DG1
|d N$T
|d E7B
|d OCLCF
|d YDXCP
|d COO
|d EBLCP
|d DEBBG
|d RECBK
|d CCO
|d MERUC
|d LOA
|d DG1
|d K6U
|d DEBSZ
|d LIP
|d PIFAG
|d FVL
|d ZCU
|d OCLCQ
|d CHVBK
|d U3W
|d COCUF
|d OCLCQ
|d OCLCO
|d STF
|d ICG
|d VT2
|d OCLCQ
|d WYU
|d TKN
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d TUHNV
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 913798198
|a 951602463
|a 992839784
|a 1055389770
|a 1066427813
|a 1081260064
|a 1228549754
|a 1244448154
|a 1249226197
|
020 |
|
|
|a 9781118939154
|q (electronic bk.)
|
020 |
|
|
|a 1118939158
|q (electronic bk.)
|
020 |
|
|
|a 9781118939147
|q (electronic bk.)
|
020 |
|
|
|a 111893914X
|q (electronic bk.)
|
020 |
|
|
|a 1118939123
|
020 |
|
|
|a 9781118939123
|
020 |
|
|
|z 9781118939123
|
029 |
1 |
|
|a AU@
|b 000054975305
|
029 |
1 |
|
|a CHBIS
|b 010660487
|
029 |
1 |
|
|a DEBBG
|b BV043397806
|
029 |
1 |
|
|a DEBBG
|b BV044052870
|
029 |
1 |
|
|a DEBSZ
|b 485058405
|
029 |
1 |
|
|a UKMGB
|b 017585408
|
035 |
|
|
|a (OCoLC)909367809
|z (OCoLC)913798198
|z (OCoLC)951602463
|z (OCoLC)992839784
|z (OCoLC)1055389770
|z (OCoLC)1066427813
|z (OCoLC)1081260064
|z (OCoLC)1228549754
|z (OCoLC)1244448154
|z (OCoLC)1249226197
|
050 |
|
4 |
|a QC355.3
|
072 |
|
7 |
|a TEC
|x 030000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 019000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.36015/118
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Nakajima, Hiroshi,
|e author.
|
245 |
1 |
0 |
|a Optical design using Excel :
|b practical calculations for laser optical systems /
|c Hiroshi Nakajima.
|
264 |
|
1 |
|a Singapore :
|b Wiley,
|c 2015.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed May 28, 2015).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Cover ; Title Page ; Copyright ; Contents ; About the Author ; Preface ; Chapter 1 Geometrical Optics ; 1.1 Characteristics of Lasers ; 1.2 The Three Fundamental Characteristics of Light Which Form the Basis of Geometrical Optics ; 1.2.1 Light Rays Travel in Straight Lines.
|
505 |
8 |
|
|a 1.2.2 Light Rays Act Independently of One Another 1.2.3 Reflection of Light Rays ; 1.2.4 Refraction of Light Rays ; 1.3 Fermat's Principle ; 1.3.1 Rectilinear Propagation ; 1.3.2 Reflection ; 1.3.3 Refraction ; 1.3.4 An Ideal Imaging System Using Lenses.
|
505 |
8 |
|
|a 1.4 Principle of Reversibility 1.5 Paraxial Theory Using Thin Lenses ; 1.5.1 Equation of a Spherical Lens Surface ; 1.5.2 Wave Front Radii of Incident Rays versus Rays Refracted by a Convex Lens ; 1.5.3 The Refractive Power of a Lens and the Thin Lens Equations.
|
505 |
8 |
|
|a 1.5.4 Imaging Equations for a Lens 1.5.5 Simple Lenses ; 1.5.6 The Focal Lengths and Principal Points of a Two-Lens Combination ; 1.6 The Five Seidel Aberrations ; 1.6.1 Monochromatic Aberration: A Brief Outline ; 1.6.2 Ray Aberration ; 1.7 The Sine Condition.
|
505 |
8 |
|
|a 1.7.1 The Abbe Sine Condition 1.7.2 The Sine Condition for an Off-Axis Object and Its Off-Axis Image ; 1.8 Aplanatic Lenses ; 1.9 Reflection and Transmission ; 1.9.1 Angles of Reflection and Refraction ; 1.9.2 Amplitude Reflection and Transmission Coefficients.
|
520 |
|
|
|a A practical introductory guide to optical design covering geometrical optics, simple wave-optics and diffraction, using Excel software- explains practical calculation methods for designing optical systems with fully worked-out examples and avoiding complex mathematical methods- includes practical calculations for ray tracing, laser beam (Gaussian beam) focusing, and diffraction calculations; the ray tracing and the diffraction calculations are done by using the VBA program which Excel provides as a supporting tool- describes basic optical theory and application methods, and provides readers with calculation methods for designing laser optical systems with numerous practical calculation examples. After finishing the book, even inexperienced readers should have the ability to design laser optical systems- covers large areas of geometrical optics and diffraction theory, providing a good overview and reference for beginners or non-specialist engineers- accompanied by a website including password protected electronic files.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
630 |
0 |
0 |
|a Microsoft Excel (Computer file)
|
630 |
0 |
7 |
|a Microsoft Excel (Computer file)
|2 fast
|
650 |
|
0 |
|a Optics
|x Mathematical models.
|
650 |
|
0 |
|a Lasers
|x Mathematical models.
|
650 |
|
4 |
|a Microsoft Excel (Computer file)
|
650 |
|
4 |
|a Optics
|x Mathematical models.
|
650 |
|
4 |
|a Lasers
|x Mathematical models.
|
650 |
|
6 |
|a Optique
|x Modèles mathématiques.
|
650 |
|
6 |
|a Lasers
|x Modèles mathématiques.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Optics.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Lasers & Photonics.
|2 bisacsh
|
650 |
|
7 |
|a Lasers
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Optics
|x Mathematical models
|2 fast
|
758 |
|
|
|i has work:
|a Optical Design Using Excel [electronic resource] (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCXCVkd3WtgJJFKkwwBbrv3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Nakajima, Hiroshi.
|t Optical design using excel : practical calculations for laser optical systems.
|d Singapore : Wiley, ©2015
|h xvii, 312 pages
|z 9781118939123
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4040035
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 5.4 Three-Dimensional Ray Tracing for a Plane Surface Which Is Perpendicular to the Optical Axis -- 5.4.1 Calculate the x- and y-Components of the Ray Height wkx, wky at the Boundary Surface -- 5.4.2 Calculate the Incident Angle θa and the Refraction Angle θb at the Boundary Surface -- 5.5 Three-Dimensional Ray Tracing for an Aberration-Free Lens -- 5.5.1 Three-Dimensional Expression of Ray Refraction by an Aberration-Free Lens -- 5.5.2 Three-Dimensional Ray Tracing for an Aberration-Free Lens -- 5.5.3 Optical Path Length Correction for an Aberration-Free Lens -- 5.6 Three-Dimensional Ray Tracing for a Lens Which Is Set at a Tilt -- 5.6.1 Rotation of the Incident Rays by an Angle-Φ -- 5.6.2 Ray Tracing for a Lens Tilted at an Angle α -- 5.6.3 Rotating the Exiting Rays (by an Angle Φ) Back to Their Original Orientation -- 5.7 How to Use the Three-Dimensional Ray Trace Calculation Table -- 5.7.1 Calculation Table -- 5.7.2 Calculation Results -- 5.7.3 Explanation of Symbols Used -- 5.8 Operating Instructions Using the Ray Trace Calculation Table, while Running the VBA Program -- 5.8.1 Using the Three-Dimensional Ray Trace Calculation Table while Running the VBA Program -- 5.8.2 Calculation Results Table -- 5.9 Three-Dimensional Ray Tracing Problems -- Reference -- Chapter 6 Mathematical Formulae for Describing Wave Motion -- 6.1 Mathematical Formulae for Describing Wave Motion -- 6.1.1 The Equations of One Dimensional Wave Motion -- 6.1.2 Harmonic Waves -- 6.1.3 Wave Equations -- 6.2 Describing Waves with Complex Exponential Functions -- 6.3 Problems Relating to Wave Motion -- Reference -- Chapter 7 Calculations for Focusing Gaussian Beams -- 7.1 What is a Gaussian Beam-- 7.1.1 First Term in Equation (7.1): Law of Energy Conservation Multiplier -- 7.1.2 Second Term in Equation (7.1): Phase.
|
880 |
0 |
|
|6 505-00/(S
|a Cover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- Chapter 1 Geometrical Optics -- 1.1 Characteristics of Lasers -- 1.2 The Three Fundamental Characteristics of Light Which Form the Basis of Geometrical Optics -- 1.2.1 Light Rays Travel in Straight Lines -- 1.2.2 Light Rays Act Independently of One Another -- 1.2.3 Reflection of Light Rays -- 1.2.4 Refraction of Light Rays -- 1.3 Fermat's Principle -- 1.3.1 Rectilinear Propagation -- 1.3.2 Reflection -- 1.3.3 Refraction -- 1.3.4 An Ideal Imaging System Using Lenses -- 1.4 Principle of Reversibility -- 1.5 Paraxial Theory Using Thin Lenses -- 1.5.1 Equation of a Spherical Lens Surface -- 1.5.2 Wave Front Radii of Incident Rays versus Rays Refracted by a Convex Lens -- 1.5.3 The Refractive Power of a Lens and the Thin Lens Equations -- 1.5.4 Imaging Equations for a Lens -- 1.5.5 Simple Lenses -- 1.5.6 The Focal Lengths and Principal Points of a Two-Lens Combination -- 1.6 The Five Seidel Aberrations -- 1.6.1 Monochromatic Aberration: A Brief Outline -- 1.6.2 Ray Aberration -- 1.7 The Sine Condition -- 1.7.1 The Abbe Sine Condition -- 1.7.2 The Sine Condition for an Off-Axis Object and Its Off-Axis Image -- 1.8 Aplanatic Lenses -- 1.9 Reflection and Transmission -- 1.9.1 Angles of Reflection and Refraction -- 1.9.2 Amplitude Reflection and Transmission Coefficients -- 1.9.3 Reflectance and Transmittance -- References -- Chapter 2 Examples of Simple Optical Design Using Paraxial Theory -- 2.1 Types of Lenses -- 2.1.1 Plano-Convex Lens and Plano-Concave Lens -- 2.1.2 Biconvex Lens -- 2.1.3 Meniscus Lens -- 2.1.4 Cylindrical Lens -- 2.1.5 Achromatic Lens -- 2.1.6 Aspheric Lens -- 2.1.7 Microscope Objective Lens -- 2.1.8 Camera Lens -- 2.1.9 f-θ Lens -- 2.1.10 Fresnel Lens -- 2.1.11 Rod Lens.
|
880 |
8 |
|
|6 505-00/(S
|a 4.6.4 Calculate the Exiting Ray ΔD, wD, tan θD on the Plane KR Which Is Tilted at an Angle -α to the Lens Coordinate System (Which Is Normal to the Exiting Optical Axis) -- 4.6.5 Transform the Coordinates Back into the Incident Ray Coordinate System (Rotate Axis through an Angle -α) -- 4.7 How to Use the Ray Trace Calculation Table -- 4.7.1 Calculation Table -- 4.7.2 Calculation Results -- 4.7.3 Aspheric Lens Ray Tracing -- 4.7.4 Explanation of Symbols Used -- 4.8 A Method for Generating a Ray Trace Calculation Table Using a VBA Program -- 4.8.1 Two-Dimensional Ray Trace Calculation Table Using VBA Programming -- 4.8.2 Output of Calculation Results -- 4.9 Sample Ray Tracing Problems -- References -- Chapter 5 Three-Dimensional Ray Tracing -- 5.1 Three-Dimensional Ray Tracing for a Spherical Surface -- 5.1.1 Calculate the Intersection Coordinates (wkx, wky, Δk) of the Ray with the kth Surface -- 5.1.2 Calculate the Incident Angle θa and the Refraction Angle θb for the Surface -- 5.1.3 Calculate the Slopes tan θkx, tan θky of the Refracted Ray -- 5.1.4 Calculate the Optical Path Length -- 5.2 Three-Dimensional Ray Tracing for a Cylindrical Surface -- 5.2.1 Calculate the Intersection Coordinates (wkx, wky, Δk) of the Ray with the Surface -- 5.2.2 Calculate the Incident Angle θa and the Refraction Angle θb for the Surface -- 5.2.3 Calculate the x- and y-Components of the Slope of the Output Ray, tan θkx, and tan θky -- 5.2.4 Calculate the Optical Path Length -- 5.3 Simulation for Two Cylindrical Lenses Which Are Fixed Longitudinally (or Laterally) but Allowed to Rotate Slightly around the Optical Axis -- 5.3.1 Rotate Rays by an Angle Φ around the Optical Axis.
|
880 |
8 |
|
|6 505-00/(S
|a 2.2 Applied Calculations for Simple Optical Systems -- 2.3 Considerations Relating to the Design of Laser Optical Systems -- 2.3.1 Design Safety -- 2.3.2 Polarization -- 2.3.3 Antireflection Coatings -- 2.3.4 Problems Caused by Interference of Light -- 2.3.5 Mirrors -- 2.3.6 Considerations Relating to a Combination of Cylindrical Lenses -- 2.3.7 Reducing or Eliminating Stray Rays -- 2.3.8 Mechanical Requirements of Optical Systems -- Chapter 3 Ray Tracing Applications of Paraxial Theory -- 3.1 Deriving the Equations for Ray Tracing Using Paraxial Theory -- 3.2 Problems of Ray Tracing Calculations Using Paraxial Theory -- Chapter 4 Two-Dimensional Ray Tracing -- 4.1 Ray Tracing for a Spherical Surface -- 4.2 Ray Tracing for a Plane Surface -- 4.2.1 Vertical Plane (α=0) -- 4.2.2 Inclined Plane (α ≠ 0) -- 4.3 Ray Tracing for an Aspheric Surface (Using VBA Programming) -- 4.3.1 An Aspheric Lens Used for Collimating Light Rays Emitted from a Laser Diode -- 4.3.2 Ray Tracing for an Aspheric Lens Using a VBA Program -- 4.4 Ray Tracing for an Aberration-Free Lens -- 4.4.1 Ray Tracing Procedure for an Aberration-Free Lens -- 4.5 Optical Path Length Calculation for an Aberration-Free Lens -- 4.5.1 Calculate the Coordinates of the Virtual Object and Its Virtual Image for an Aberration-Free Lens -- 4.5.2 Obtain the Imaginary Object P(z, y) -- 4.5.3 Obtain the Imaginary Image P'(z', y') -- 4.5.4 Optical Path Length Adjustment for an Aberration-Free Lens -- 4.6 Ray Tracing for an Optical System Which Is Set at a Tilt -- 4.6.1 Ray Tracing for the Rays Traveling to the Incident Plane IQ (Tilted at an Angle α) -- 4.6.2 Transformation of the Coordinate to the Lens Coordinates (Rotation of the Axis through Angle α) -- 4.6.3 Ray Tracing for Rays Passing through the Lens.
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4040035
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11055588
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 993143
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis31416049
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00621861
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12428657
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12434208
|
994 |
|
|
|a 92
|b IZTAP
|