|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn908072119 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
150416t20142014riu ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d COO
|d EBLCP
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d MYG
|d IDB
|d OCLCQ
|d GZM
|d UIU
|d YDXCP
|d OCLCQ
|d INT
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 906578689
|a 922981907
|a 1003830029
|
020 |
|
|
|a 9781470420307
|q (e-book)
|
020 |
|
|
|a 1470420309
|q (e-book)
|
020 |
|
|
|a 1470409836
|q (alk. paper)
|
020 |
|
|
|a 9781470409838
|q (alk. paper)
|
020 |
|
|
|z 9781470409838
|
029 |
1 |
|
|a AU@
|b 000062344724
|
029 |
1 |
|
|a DEBBG
|b BV043623591
|
029 |
1 |
|
|a DEBSZ
|b 452553814
|
035 |
|
|
|a (OCoLC)908072119
|z (OCoLC)906578689
|z (OCoLC)922981907
|z (OCoLC)1003830029
|
050 |
|
4 |
|a QA614.83
|b .D456 2014eb
|
082 |
0 |
4 |
|a 516/.156
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Delort, Jean-Marc,
|d 1961-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjJ3rxpjKMmrvF8kKxx4FX
|
245 |
1 |
0 |
|a Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres /
|c J.-M. Delort.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2014.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (92 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v Volume 234, Number 1103 (third of 5 numbers)
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Title page -- Chapter 0. Introduction -- Chapter 1. Statement of the main theorem -- Chapter 2. Symbolic calculus -- Chapter 3. Quasi-linear Birkhoff normal forms method -- Chapter 4. Proof of the main theorem -- A. Appendix -- Bibliography -- Back Cover
|
520 |
|
|
|a The Hamiltonian X([vertical line][delta]tu[vertical line]2+[vertical line][delta]u[vertical line]2+m2[vertical line]u[vertical line]2) dx, defined on functions on R x X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. We consider perturbations of this Hamiltonian, given by polynomial expressions depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-Gordon equation. We show that, when X is the sphere, and when the mass parameter m is outside an exceptional subset of zero measure, smooth Cauchy data of small size give rise to almost global solutions, i.e. solutions defined on a time interval of length cN-N for any N. Previous results were limited either to the semi-linear case (when the perturbation of the Hamiltonian depends only on u) or to the one dimensional problem. The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying on convenient generalizations of para-differential calculus.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Hamiltonian systems.
|
650 |
|
0 |
|a Klein-Gordon equation.
|
650 |
|
0 |
|a Wave equation.
|
650 |
|
0 |
|a Sphere.
|
650 |
|
6 |
|a Systèmes hamiltoniens.
|
650 |
|
6 |
|a Équation de Klein-Gordon.
|
650 |
|
6 |
|a Équations d'onde.
|
650 |
|
6 |
|a Sphère.
|
650 |
|
7 |
|a spheres (geometric figures)
|2 aat
|
650 |
|
7 |
|a Hamiltonian systems
|2 fast
|
650 |
|
7 |
|a Klein-Gordon equation
|2 fast
|
650 |
|
7 |
|a Sphere
|2 fast
|
650 |
|
7 |
|a Wave equation
|2 fast
|
758 |
|
|
|i has work:
|a Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH6ycm4DKyvYf38vJCb4xC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Delort, Jean-Marc, 1961-
|t Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres.
|d Providence, Rhode Island : American Mathematical Society, ©2014
|h v, 80 pages
|k Memoirs of the American Mathematical Society ; Volume 234, Number 1103 (third of 5 numbers)
|x 1947-6221
|z 9781470409838
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v Volume 234, no. 1103 (third of 5 numbers)
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114321
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444911
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3114321
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11040325
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12372053
|
994 |
|
|
|a 92
|b IZTAP
|