Cargando…

Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres /

The Hamiltonian X([vertical line][delta]tu[vertical line]2+[vertical line][delta]u[vertical line]2+m2[vertical line]u[vertical line]2) dx, defined on functions on R x X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. We consider perturbati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Delort, Jean-Marc, 1961- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2014.
Colección:Memoirs of the American Mathematical Society ; Volume 234, no. 1103 (third of 5 numbers)
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:The Hamiltonian X([vertical line][delta]tu[vertical line]2+[vertical line][delta]u[vertical line]2+m2[vertical line]u[vertical line]2) dx, defined on functions on R x X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. We consider perturbations of this Hamiltonian, given by polynomial expressions depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-Gordon equation. We show that, when X is the sphere, and when the mass parameter m is outside an exceptional subset of zero measure, smooth Cauchy data of small size give rise to almost global solutions, i.e. solutions defined on a time interval of length cN-N for any N. Previous results were limited either to the semi-linear case (when the perturbation of the Hamiltonian depends only on u) or to the one dimensional problem. The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying on convenient generalizations of para-differential calculus.
Descripción Física:1 online resource (92 pages)
Bibliografía:Includes bibliographical references.
ISBN:9781470420307
1470420309
1470409836
9781470409838
ISSN:1947-6221 ;
1947-6221