Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann conjecture /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2014.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 233, no. 1100 (sixth of 6 numbers) |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Preface
- Introduction
- Chapter 1. Foundations of Sheaves on Graphs and Their Homological Invariants
- 1.1. Introduction
- 1.2. Basic Definitions and Main Results
- 1.3. Galois and Covering Theory
- 1.4. Sheaf Theory and Homology
- 1.5. Twisted Cohomology
- 1.6. Maximum Excess and Supermodularity
- 1.7. â?Žâ??^{ } and the Universal Abelian Covering
- 1.8. Proof of Theorem 1.10
- 1.9. Concluding Remarks
- Chapter 2. The Hanna Neumann Conjecture
- 2.1. Introduction
- 2.2. The Strengthened Hanna Neumann Conjecture
- 2.3. Graph Theoretic Formulation of the SHNC2.4. Galois and Covering Theory in the SHNC
- 2.5.-kernels
- 2.6. Symmetry and Algebra of the Excess
- 2.7. Variability of -th Power Kernels
- 2.8. Proof of the SHNC
- 2.9. Concluding Remarks
- Appendix A.A Direct View of -Kernels
- Appendix B. Joel Friedman�s Proof of the strengthened Hanna Neumann conjecture by Warren Dicks
- B.1. Sheaves on graphs
- B.2. Free groups and graphs
- B.3. The strengthened Hanna Neumann conjecture
- Bibliography
- Back Cover