Endoscopic classification of representations of quasi-split unitary groups /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2014.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 235, no. 1108 (third of 5 numbers) |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- Acknowledgement
- Notation
- Chapter 2. Statement of the main theorems
- 2.1.-groups and -embeddings
- 2.2. Formalism of local parameters
- 2.3. Formal global parameters
- 2.4. Endoscopic data and parameters
- 2.5. Statement of main results
- 2.6. Review of earlier results
- Chapter 3. Local character identities and the intertwining relation
- 3.1. Local endoscopic transfer of test functions
- 3.2. Characterization of the local classification
- 3.3. Normalization of local intertwining operators3.4. The local intertwining relation, part I
- 3.5. The local intertwining relation, part II
- Chapter 4. Trace formulas and their stabilization
- 4.1. Discrete part of trace formula
- 4.2. Stabilization of trace formula
- 4.3. Preliminary comparison
- Chapter 5. The Standard model
- 5.1. Stable multiplicity formula
- 5.2. The global intertwining relation, part I
- 5.3. The global intertwining relation, part II
- 5.4. The spectral expansion, part I
- 5.5. The spectral expansion, part II
- 5.6. The endoscopic expansion5.7. The comparison
- 5.8. The two sign lemmas
- Chapter 6. Study of Critical Cases
- 6.1. The case of square-integrable parameters
- 6.2. The case of elliptic parameters
- 6.3. Supplementary parameter
- 6.4. Generic parameters with local constraints
- Chapter 7. Local Classification
- 7.1. Resumé on local parameters and local packets
- 7.2. Construction of global representation
- 7.3. Construction of global parameter
- 7.4. The local intertwining relation
- 7.5. Elliptic orthogonality relation
- 7.6. Local packets for non square-integrable parameters7.7. Local packets for square-integrable composite parameters
- 7.8. Local packets for simple parameters
- 7.9. Resolution
- Chapter 8. Nontempered representations
- 8.1. Duality operator of Aubert-Schneider-Stuhler
- 8.2. Local parameters
- 8.3. Construction of global parameters with local constraints
- 8.4. Local packets for square-integrable parameters
- 8.5. The local intertwining relation
- Chapter 9. Global classification
- 9.1. Completion of induction arguments, part I
- 9.2. Completion of induction arguments, part II9.3. Appendix
- Chapter 10. Addendum
- Bibliography
- Back Cover