Geometric complexity theory IV : nonstandard quantum group for the Kronecker problem /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2014.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 235, no. 1109 (fourth of 5 numbers) |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- 1.1. The Kronecker problem
- 1.2. The basis-theoretic version of the Kronecker problem
- 1.3. Canonical bases connect quantum Schur-Weyl duality with RSK
- 1.4. The nonstandard quantum group and Hecke algebra
- 1.5. Towards an upper canonical basis for \nsbr{ }^{\tsr }
- 1.6. The approach of Adsul, Sohoni, and Subrahmanyam
- 1.7. A global crystal basis for \nsbr{ }_{ }
- 1.8. Organization
- Chapter 2. Basic concepts and notation
- 2.1. General notation
- 2.2. Tensor products
- 2.3. Words and tableaux2.4. Cells
- 2.5. Comodules
- 2.6. Dually paired Hopf algebras
- Chapter 3. Hecke algebras and canonical bases
- 3.1. The upper canonical basis of â??()
- 3.2. Cells in type
- Chapter 4. The quantum group _{ }()
- 4.1. The quantized enveloping algebra \Uq
- 4.2. FRT-algebras
- 4.3. The quantum coordinate algebra Ã?(_{ }())
- 4.4. The quantum determinant and the Hopf algebra Ã?(_{ }())
- 4.5. A reduction system for Ã?(_{ }())
- 4.6. Compactness, unitary transformations
- 4.7. Representations of _{ }()Chapter 5. Bases for _{ }() modules
- 5.1. Gelfand-Tsetlin bases and Clebsch-Gordon coefficients
- 5.2. Crystal bases
- 5.3. Global crystal bases
- 5.4. Projected based modules
- 5.5. Tensor products of based modules
- Chapter 6. Quantum Schur-Weyl duality and canonical bases
- 6.1. Commuting actions on \bT= ^{\tsr }
- 6.2. Upper canonical basis of \bT
- 6.3. Graphical calculus for _{ }(\glâ??)-modules
- Chapter 7. Notation for _{ }()Ã? _{ }()
- Chapter 8. The nonstandard coordinate algebra (â?³_{ }())8.1. Definition of Ã?(_{ }(\nsbr{ }))
- 8.2. Nonstandard symmetric and exterior algebras
- 8.3. Explicit product formulae
- 8.4. Examples and computations for Ã?(_{ }(\nsbr{ }))
- Chapter 9. Nonstandard determinant and minors
- 9.1. Definitions
- 9.2. Nonstandard minors in the two-row case
- 9.3. Symmetry of the determinants and minors
- 9.4. Formulae for nonstandard minors
- Chapter 10. The nonstandard quantum groups _{ }() and _{ }()
- 10.1. Hopf structure
- 10.2. Compact real form10.3. Complete reducibility
- Chapter 11. The nonstandard Hecke algebra â??áæ£
- 11.1. Definition of \nsHáæ£ and basic properties
- 11.2. Semisimplicity of \field\nsHáæ£
- 11.3. Representation theory of ²â??áæ£
- 11.4. Some representation theory of \nsHáæ£
- 11.5. The sign representation in the canonical basis
- 11.6. The algebra \nsHâ??
- 11.7. A canonical basis of \nsHâ??
- 11.8. The algebra \nsHâ??
- Chapter 12. Nonstandard Schur-Weyl duality
- 12.1. Nonstandard Schur-Weyl duality