|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn908071935 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
150417t20142014riu ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d EBLCP
|d DEBSZ
|d OCLCF
|d OCLCQ
|d OCLCO
|d MYG
|d IDB
|d OCLCQ
|d QGK
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922981938
|a 1241871082
|a 1290082765
|
020 |
|
|
|a 9781470422271
|q (e-book)
|
020 |
|
|
|a 1470422271
|q (e-book)
|
020 |
|
|
|z 9781470410117
|
029 |
1 |
|
|a AU@
|b 000069392286
|
029 |
1 |
|
|a DEBBG
|b BV043623603
|
029 |
1 |
|
|a DEBSZ
|b 452553954
|
035 |
|
|
|a (OCoLC)908071935
|z (OCoLC)922981938
|z (OCoLC)1241871082
|z (OCoLC)1290082765
|
050 |
|
4 |
|a QA164
|b .B537 2014eb
|
082 |
0 |
4 |
|a 516/.13
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Blasiak, Jonah,
|d 1982-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjqvcTkrfyQV6Xjty9664y
|
245 |
1 |
0 |
|a Geometric complexity theory IV :
|b nonstandard quantum group for the Kronecker problem /
|c Jonah Blasiak, Ketan D. Mulmuley, Milind Sohoni.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2014.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (176 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v Volume 235, Number 1109 (fourth of 5 numbers)
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Title page -- Chapter 1. Introduction -- 1.1. The Kronecker problem -- 1.2. The basis-theoretic version of the Kronecker problem -- 1.3. Canonical bases connect quantum Schur-Weyl duality with RSK -- 1.4. The nonstandard quantum group and Hecke algebra -- 1.5. Towards an upper canonical basis for \nsbr{ }^{\tsr } -- 1.6. The approach of Adsul, Sohoni, and Subrahmanyam -- 1.7. A global crystal basis for \nsbr{ }_{ } -- 1.8. Organization -- Chapter 2. Basic concepts and notation -- 2.1. General notation -- 2.2. Tensor products
|
505 |
8 |
|
|a 2.3. Words and tableaux2.4. Cells -- 2.5. Comodules -- 2.6. Dually paired Hopf algebras -- Chapter 3. Hecke algebras and canonical bases -- 3.1. The upper canonical basis of â??() -- 3.2. Cells in type -- Chapter 4. The quantum group _{ }() -- 4.1. The quantized enveloping algebra \Uq -- 4.2. FRT-algebras -- 4.3. The quantum coordinate algebra Ã?(_{ }()) -- 4.4. The quantum determinant and the Hopf algebra Ã?(_{ }()) -- 4.5. A reduction system for Ã?(_{ }()) -- 4.6. Compactness, unitary transformations
|
505 |
8 |
|
|a 4.7. Representations of _{ }()Chapter 5. Bases for _{ }() modules -- 5.1. Gelfand-Tsetlin bases and Clebsch-Gordon coefficients -- 5.2. Crystal bases -- 5.3. Global crystal bases -- 5.4. Projected based modules -- 5.5. Tensor products of based modules -- Chapter 6. Quantum Schur-Weyl duality and canonical bases -- 6.1. Commuting actions on \bT= ^{\tsr } -- 6.2. Upper canonical basis of \bT -- 6.3. Graphical calculus for _{ }(\glâ??)-modules -- Chapter 7. Notation for _{ }()Ã? _{ }()
|
505 |
8 |
|
|a Chapter 8. The nonstandard coordinate algebra (â?³_{ }())8.1. Definition of Ã?(_{ }(\nsbr{ })) -- 8.2. Nonstandard symmetric and exterior algebras -- 8.3. Explicit product formulae -- 8.4. Examples and computations for Ã?(_{ }(\nsbr{ })) -- Chapter 9. Nonstandard determinant and minors -- 9.1. Definitions -- 9.2. Nonstandard minors in the two-row case -- 9.3. Symmetry of the determinants and minors -- 9.4. Formulae for nonstandard minors -- Chapter 10. The nonstandard quantum groups _{ }() and _{ }() -- 10.1. Hopf structure
|
505 |
8 |
|
|a 10.2. Compact real form10.3. Complete reducibility -- Chapter 11. The nonstandard Hecke algebra â??áæ£ -- 11.1. Definition of \nsHáæ£ and basic properties -- 11.2. Semisimplicity of \field\nsHáæ£ -- 11.3. Representation theory of ²â??áæ£ -- 11.4. Some representation theory of \nsHáæ£ -- 11.5. The sign representation in the canonical basis -- 11.6. The algebra \nsHâ?? -- 11.7. A canonical basis of \nsHâ?? -- 11.8. The algebra \nsHâ?? -- Chapter 12. Nonstandard Schur-Weyl duality -- 12.1. Nonstandard Schur-Weyl duality
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Combinatorial analysis.
|
650 |
|
0 |
|a Kronecker products.
|
650 |
|
6 |
|a Analyse combinatoire.
|
650 |
|
6 |
|a Produits de Kronecker.
|
650 |
|
7 |
|a Combinatorial analysis
|2 fast
|
650 |
|
7 |
|a Kronecker products
|2 fast
|
700 |
1 |
|
|a Mulmuley, Ketan,
|e author.
|
700 |
1 |
|
|a Sohoni, Milind,
|d 1969-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjx4YbGgDyH47wcTWtMCcd
|
758 |
|
|
|i has work:
|a Geometric complexity theory IV (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGmd89JKWY9kmmPRJcJKv3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Blasiak, Jonah, 1982-
|t Geometric complexity theory IV : nonstandard quantum group for the Kronecker problem.
|d Providence, Rhode Island : American Mathematical Society, ©2014
|h ix, 160 pages
|k Memoirs of the American Mathematical Society ; Volume 235, Number 1109 (fourth of 5 numbers)
|x 1947-6221
|z 9781470410117
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v Volume 235, no. 1109 (fourth of 5 numbers)
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114336
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3114336
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11040340
|
994 |
|
|
|a 92
|b IZTAP
|